include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,4,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,6,2}*384
if this polytope has a name.
Group : SmallGroup(384,18491)
Rank : 5
Schlafli Type : {4,4,6,2}
Number of vertices, edges, etc : 4, 8, 12, 6, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{4,4,6,2,2} of size 768
{4,4,6,2,3} of size 1152
{4,4,6,2,5} of size 1920
Vertex Figure Of :
{2,4,4,6,2} of size 768
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,6,2}*192a, {4,2,6,2}*192
3-fold quotients : {4,4,2,2}*128
4-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96
6-fold quotients : {2,4,2,2}*64, {4,2,2,2}*64
8-fold quotients : {2,2,3,2}*48
12-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,4,12,2}*768, {4,4,6,4}*768a, {4,8,6,2}*768a, {8,4,6,2}*768a, {4,8,6,2}*768b, {8,4,6,2}*768b, {4,4,6,2}*768a
3-fold covers : {4,4,18,2}*1152, {4,4,6,6}*1152a, {4,4,6,6}*1152b, {4,12,6,2}*1152a, {12,4,6,2}*1152, {4,12,6,2}*1152c
5-fold covers : {4,4,30,2}*1920, {4,4,6,10}*1920, {4,20,6,2}*1920, {20,4,6,2}*1920
Permutation Representation (GAP) :
s0 := ( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)(10,22)
(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)
(34,46)(35,47)(36,48);;
s1 := (13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)(31,34)
(32,35)(33,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45);;
s2 := ( 1,25)( 2,27)( 3,26)( 4,28)( 5,30)( 6,29)( 7,31)( 8,33)( 9,32)(10,34)
(11,36)(12,35)(13,37)(14,39)(15,38)(16,40)(17,42)(18,41)(19,43)(20,45)(21,44)
(22,46)(23,48)(24,47);;
s3 := ( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,44)(46,47);;
s4 := (49,50);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(50)!( 1,13)( 2,14)( 3,15)( 4,16)( 5,17)( 6,18)( 7,19)( 8,20)( 9,21)
(10,22)(11,23)(12,24)(25,37)(26,38)(27,39)(28,40)(29,41)(30,42)(31,43)(32,44)
(33,45)(34,46)(35,47)(36,48);
s1 := Sym(50)!(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,28)(26,29)(27,30)
(31,34)(32,35)(33,36)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45);
s2 := Sym(50)!( 1,25)( 2,27)( 3,26)( 4,28)( 5,30)( 6,29)( 7,31)( 8,33)( 9,32)
(10,34)(11,36)(12,35)(13,37)(14,39)(15,38)(16,40)(17,42)(18,41)(19,43)(20,45)
(21,44)(22,46)(23,48)(24,47);
s3 := Sym(50)!( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)
(28,29)(31,32)(34,35)(37,38)(40,41)(43,44)(46,47);
s4 := Sym(50)!(49,50);
poly := sub<Sym(50)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope