Polytope of Type {4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24}*768f
if this polytope has a name.
Group : SmallGroup(768,1085644)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 16, 192, 96
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12}*384b
   4-fold quotients : {4,6}*192a, {4,24}*192d
   8-fold quotients : {4,12}*96b
   16-fold quotients : {4,6}*48c
   32-fold quotients : {4,3}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 61)(  2, 62)(  3, 63)(  4, 64)(  5, 57)(  6, 58)(  7, 59)(  8, 60)
(  9, 53)( 10, 54)( 11, 55)( 12, 56)( 13, 49)( 14, 50)( 15, 51)( 16, 52)
( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 73)( 22, 74)( 23, 75)( 24, 76)
( 25, 69)( 26, 70)( 27, 71)( 28, 72)( 29, 65)( 30, 66)( 31, 67)( 32, 68)
( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 89)( 38, 90)( 39, 91)( 40, 92)
( 41, 85)( 42, 86)( 43, 87)( 44, 88)( 45, 81)( 46, 82)( 47, 83)( 48, 84)
( 97,157)( 98,158)( 99,159)(100,160)(101,153)(102,154)(103,155)(104,156)
(105,149)(106,150)(107,151)(108,152)(109,145)(110,146)(111,147)(112,148)
(113,173)(114,174)(115,175)(116,176)(117,169)(118,170)(119,171)(120,172)
(121,165)(122,166)(123,167)(124,168)(125,161)(126,162)(127,163)(128,164)
(129,189)(130,190)(131,191)(132,192)(133,185)(134,186)(135,187)(136,188)
(137,181)(138,182)(139,183)(140,184)(141,177)(142,178)(143,179)(144,180)
(193,253)(194,254)(195,255)(196,256)(197,249)(198,250)(199,251)(200,252)
(201,245)(202,246)(203,247)(204,248)(205,241)(206,242)(207,243)(208,244)
(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)(216,268)
(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)(224,260)
(225,285)(226,286)(227,287)(228,288)(229,281)(230,282)(231,283)(232,284)
(233,277)(234,278)(235,279)(236,280)(237,273)(238,274)(239,275)(240,276)
(289,349)(290,350)(291,351)(292,352)(293,345)(294,346)(295,347)(296,348)
(297,341)(298,342)(299,343)(300,344)(301,337)(302,338)(303,339)(304,340)
(305,365)(306,366)(307,367)(308,368)(309,361)(310,362)(311,363)(312,364)
(313,357)(314,358)(315,359)(316,360)(317,353)(318,354)(319,355)(320,356)
(321,381)(322,382)(323,383)(324,384)(325,377)(326,378)(327,379)(328,380)
(329,373)(330,374)(331,375)(332,376)(333,369)(334,370)(335,371)(336,372);;
s1 := (  1,289)(  2,290)(  3,292)(  4,291)(  5,294)(  6,293)(  7,295)(  8,296)
(  9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)( 16,297)
( 17,321)( 18,322)( 19,324)( 20,323)( 21,326)( 22,325)( 23,327)( 24,328)
( 25,336)( 26,335)( 27,333)( 28,334)( 29,331)( 30,332)( 31,330)( 32,329)
( 33,305)( 34,306)( 35,308)( 36,307)( 37,310)( 38,309)( 39,311)( 40,312)
( 41,320)( 42,319)( 43,317)( 44,318)( 45,315)( 46,316)( 47,314)( 48,313)
( 49,337)( 50,338)( 51,340)( 52,339)( 53,342)( 54,341)( 55,343)( 56,344)
( 57,352)( 58,351)( 59,349)( 60,350)( 61,347)( 62,348)( 63,346)( 64,345)
( 65,369)( 66,370)( 67,372)( 68,371)( 69,374)( 70,373)( 71,375)( 72,376)
( 73,384)( 74,383)( 75,381)( 76,382)( 77,379)( 78,380)( 79,378)( 80,377)
( 81,353)( 82,354)( 83,356)( 84,355)( 85,358)( 86,357)( 87,359)( 88,360)
( 89,368)( 90,367)( 91,365)( 92,366)( 93,363)( 94,364)( 95,362)( 96,361)
( 97,193)( 98,194)( 99,196)(100,195)(101,198)(102,197)(103,199)(104,200)
(105,208)(106,207)(107,205)(108,206)(109,203)(110,204)(111,202)(112,201)
(113,225)(114,226)(115,228)(116,227)(117,230)(118,229)(119,231)(120,232)
(121,240)(122,239)(123,237)(124,238)(125,235)(126,236)(127,234)(128,233)
(129,209)(130,210)(131,212)(132,211)(133,214)(134,213)(135,215)(136,216)
(137,224)(138,223)(139,221)(140,222)(141,219)(142,220)(143,218)(144,217)
(145,241)(146,242)(147,244)(148,243)(149,246)(150,245)(151,247)(152,248)
(153,256)(154,255)(155,253)(156,254)(157,251)(158,252)(159,250)(160,249)
(161,273)(162,274)(163,276)(164,275)(165,278)(166,277)(167,279)(168,280)
(169,288)(170,287)(171,285)(172,286)(173,283)(174,284)(175,282)(176,281)
(177,257)(178,258)(179,260)(180,259)(181,262)(182,261)(183,263)(184,264)
(185,272)(186,271)(187,269)(188,270)(189,267)(190,268)(191,266)(192,265);;
s2 := (  1, 33)(  2, 35)(  3, 34)(  4, 36)(  5, 41)(  6, 43)(  7, 42)(  8, 44)
(  9, 37)( 10, 39)( 11, 38)( 12, 40)( 13, 45)( 14, 47)( 15, 46)( 16, 48)
( 18, 19)( 21, 25)( 22, 27)( 23, 26)( 24, 28)( 30, 31)( 49, 81)( 50, 83)
( 51, 82)( 52, 84)( 53, 89)( 54, 91)( 55, 90)( 56, 92)( 57, 85)( 58, 87)
( 59, 86)( 60, 88)( 61, 93)( 62, 95)( 63, 94)( 64, 96)( 66, 67)( 69, 73)
( 70, 75)( 71, 74)( 72, 76)( 78, 79)( 97,177)( 98,179)( 99,178)(100,180)
(101,185)(102,187)(103,186)(104,188)(105,181)(106,183)(107,182)(108,184)
(109,189)(110,191)(111,190)(112,192)(113,161)(114,163)(115,162)(116,164)
(117,169)(118,171)(119,170)(120,172)(121,165)(122,167)(123,166)(124,168)
(125,173)(126,175)(127,174)(128,176)(129,145)(130,147)(131,146)(132,148)
(133,153)(134,155)(135,154)(136,156)(137,149)(138,151)(139,150)(140,152)
(141,157)(142,159)(143,158)(144,160)(193,321)(194,323)(195,322)(196,324)
(197,329)(198,331)(199,330)(200,332)(201,325)(202,327)(203,326)(204,328)
(205,333)(206,335)(207,334)(208,336)(209,305)(210,307)(211,306)(212,308)
(213,313)(214,315)(215,314)(216,316)(217,309)(218,311)(219,310)(220,312)
(221,317)(222,319)(223,318)(224,320)(225,289)(226,291)(227,290)(228,292)
(229,297)(230,299)(231,298)(232,300)(233,293)(234,295)(235,294)(236,296)
(237,301)(238,303)(239,302)(240,304)(241,369)(242,371)(243,370)(244,372)
(245,377)(246,379)(247,378)(248,380)(249,373)(250,375)(251,374)(252,376)
(253,381)(254,383)(255,382)(256,384)(257,353)(258,355)(259,354)(260,356)
(261,361)(262,363)(263,362)(264,364)(265,357)(266,359)(267,358)(268,360)
(269,365)(270,367)(271,366)(272,368)(273,337)(274,339)(275,338)(276,340)
(277,345)(278,347)(279,346)(280,348)(281,341)(282,343)(283,342)(284,344)
(285,349)(286,351)(287,350)(288,352);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 61)(  2, 62)(  3, 63)(  4, 64)(  5, 57)(  6, 58)(  7, 59)
(  8, 60)(  9, 53)( 10, 54)( 11, 55)( 12, 56)( 13, 49)( 14, 50)( 15, 51)
( 16, 52)( 17, 77)( 18, 78)( 19, 79)( 20, 80)( 21, 73)( 22, 74)( 23, 75)
( 24, 76)( 25, 69)( 26, 70)( 27, 71)( 28, 72)( 29, 65)( 30, 66)( 31, 67)
( 32, 68)( 33, 93)( 34, 94)( 35, 95)( 36, 96)( 37, 89)( 38, 90)( 39, 91)
( 40, 92)( 41, 85)( 42, 86)( 43, 87)( 44, 88)( 45, 81)( 46, 82)( 47, 83)
( 48, 84)( 97,157)( 98,158)( 99,159)(100,160)(101,153)(102,154)(103,155)
(104,156)(105,149)(106,150)(107,151)(108,152)(109,145)(110,146)(111,147)
(112,148)(113,173)(114,174)(115,175)(116,176)(117,169)(118,170)(119,171)
(120,172)(121,165)(122,166)(123,167)(124,168)(125,161)(126,162)(127,163)
(128,164)(129,189)(130,190)(131,191)(132,192)(133,185)(134,186)(135,187)
(136,188)(137,181)(138,182)(139,183)(140,184)(141,177)(142,178)(143,179)
(144,180)(193,253)(194,254)(195,255)(196,256)(197,249)(198,250)(199,251)
(200,252)(201,245)(202,246)(203,247)(204,248)(205,241)(206,242)(207,243)
(208,244)(209,269)(210,270)(211,271)(212,272)(213,265)(214,266)(215,267)
(216,268)(217,261)(218,262)(219,263)(220,264)(221,257)(222,258)(223,259)
(224,260)(225,285)(226,286)(227,287)(228,288)(229,281)(230,282)(231,283)
(232,284)(233,277)(234,278)(235,279)(236,280)(237,273)(238,274)(239,275)
(240,276)(289,349)(290,350)(291,351)(292,352)(293,345)(294,346)(295,347)
(296,348)(297,341)(298,342)(299,343)(300,344)(301,337)(302,338)(303,339)
(304,340)(305,365)(306,366)(307,367)(308,368)(309,361)(310,362)(311,363)
(312,364)(313,357)(314,358)(315,359)(316,360)(317,353)(318,354)(319,355)
(320,356)(321,381)(322,382)(323,383)(324,384)(325,377)(326,378)(327,379)
(328,380)(329,373)(330,374)(331,375)(332,376)(333,369)(334,370)(335,371)
(336,372);
s1 := Sym(384)!(  1,289)(  2,290)(  3,292)(  4,291)(  5,294)(  6,293)(  7,295)
(  8,296)(  9,304)( 10,303)( 11,301)( 12,302)( 13,299)( 14,300)( 15,298)
( 16,297)( 17,321)( 18,322)( 19,324)( 20,323)( 21,326)( 22,325)( 23,327)
( 24,328)( 25,336)( 26,335)( 27,333)( 28,334)( 29,331)( 30,332)( 31,330)
( 32,329)( 33,305)( 34,306)( 35,308)( 36,307)( 37,310)( 38,309)( 39,311)
( 40,312)( 41,320)( 42,319)( 43,317)( 44,318)( 45,315)( 46,316)( 47,314)
( 48,313)( 49,337)( 50,338)( 51,340)( 52,339)( 53,342)( 54,341)( 55,343)
( 56,344)( 57,352)( 58,351)( 59,349)( 60,350)( 61,347)( 62,348)( 63,346)
( 64,345)( 65,369)( 66,370)( 67,372)( 68,371)( 69,374)( 70,373)( 71,375)
( 72,376)( 73,384)( 74,383)( 75,381)( 76,382)( 77,379)( 78,380)( 79,378)
( 80,377)( 81,353)( 82,354)( 83,356)( 84,355)( 85,358)( 86,357)( 87,359)
( 88,360)( 89,368)( 90,367)( 91,365)( 92,366)( 93,363)( 94,364)( 95,362)
( 96,361)( 97,193)( 98,194)( 99,196)(100,195)(101,198)(102,197)(103,199)
(104,200)(105,208)(106,207)(107,205)(108,206)(109,203)(110,204)(111,202)
(112,201)(113,225)(114,226)(115,228)(116,227)(117,230)(118,229)(119,231)
(120,232)(121,240)(122,239)(123,237)(124,238)(125,235)(126,236)(127,234)
(128,233)(129,209)(130,210)(131,212)(132,211)(133,214)(134,213)(135,215)
(136,216)(137,224)(138,223)(139,221)(140,222)(141,219)(142,220)(143,218)
(144,217)(145,241)(146,242)(147,244)(148,243)(149,246)(150,245)(151,247)
(152,248)(153,256)(154,255)(155,253)(156,254)(157,251)(158,252)(159,250)
(160,249)(161,273)(162,274)(163,276)(164,275)(165,278)(166,277)(167,279)
(168,280)(169,288)(170,287)(171,285)(172,286)(173,283)(174,284)(175,282)
(176,281)(177,257)(178,258)(179,260)(180,259)(181,262)(182,261)(183,263)
(184,264)(185,272)(186,271)(187,269)(188,270)(189,267)(190,268)(191,266)
(192,265);
s2 := Sym(384)!(  1, 33)(  2, 35)(  3, 34)(  4, 36)(  5, 41)(  6, 43)(  7, 42)
(  8, 44)(  9, 37)( 10, 39)( 11, 38)( 12, 40)( 13, 45)( 14, 47)( 15, 46)
( 16, 48)( 18, 19)( 21, 25)( 22, 27)( 23, 26)( 24, 28)( 30, 31)( 49, 81)
( 50, 83)( 51, 82)( 52, 84)( 53, 89)( 54, 91)( 55, 90)( 56, 92)( 57, 85)
( 58, 87)( 59, 86)( 60, 88)( 61, 93)( 62, 95)( 63, 94)( 64, 96)( 66, 67)
( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 78, 79)( 97,177)( 98,179)( 99,178)
(100,180)(101,185)(102,187)(103,186)(104,188)(105,181)(106,183)(107,182)
(108,184)(109,189)(110,191)(111,190)(112,192)(113,161)(114,163)(115,162)
(116,164)(117,169)(118,171)(119,170)(120,172)(121,165)(122,167)(123,166)
(124,168)(125,173)(126,175)(127,174)(128,176)(129,145)(130,147)(131,146)
(132,148)(133,153)(134,155)(135,154)(136,156)(137,149)(138,151)(139,150)
(140,152)(141,157)(142,159)(143,158)(144,160)(193,321)(194,323)(195,322)
(196,324)(197,329)(198,331)(199,330)(200,332)(201,325)(202,327)(203,326)
(204,328)(205,333)(206,335)(207,334)(208,336)(209,305)(210,307)(211,306)
(212,308)(213,313)(214,315)(215,314)(216,316)(217,309)(218,311)(219,310)
(220,312)(221,317)(222,319)(223,318)(224,320)(225,289)(226,291)(227,290)
(228,292)(229,297)(230,299)(231,298)(232,300)(233,293)(234,295)(235,294)
(236,296)(237,301)(238,303)(239,302)(240,304)(241,369)(242,371)(243,370)
(244,372)(245,377)(246,379)(247,378)(248,380)(249,373)(250,375)(251,374)
(252,376)(253,381)(254,383)(255,382)(256,384)(257,353)(258,355)(259,354)
(260,356)(261,361)(262,363)(263,362)(264,364)(265,357)(266,359)(267,358)
(268,360)(269,365)(270,367)(271,366)(272,368)(273,337)(274,339)(275,338)
(276,340)(277,345)(278,347)(279,346)(280,348)(281,341)(282,343)(283,342)
(284,344)(285,349)(286,351)(287,350)(288,352);
poly := sub<Sym(384)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope