include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {24,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4}*768f
if this polytope has a name.
Group : SmallGroup(768,1085644)
Rank : 3
Schlafli Type : {24,4}
Number of vertices, edges, etc : 96, 192, 16
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,4}*384b
4-fold quotients : {6,4}*192a, {24,4}*192d
8-fold quotients : {12,4}*96b
16-fold quotients : {6,4}*48c
32-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)( 26, 46)
( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)( 55, 56)
( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)( 76, 95)
( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)(100,147)
(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)(108,159)
(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)(116,179)
(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)(124,191)
(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)(132,163)
(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)(140,175)
(141,169)(142,170)(143,172)(144,171)(193,289)(194,290)(195,292)(196,291)
(197,293)(198,294)(199,296)(200,295)(201,301)(202,302)(203,304)(204,303)
(205,297)(206,298)(207,300)(208,299)(209,321)(210,322)(211,324)(212,323)
(213,325)(214,326)(215,328)(216,327)(217,333)(218,334)(219,336)(220,335)
(221,329)(222,330)(223,332)(224,331)(225,305)(226,306)(227,308)(228,307)
(229,309)(230,310)(231,312)(232,311)(233,317)(234,318)(235,320)(236,319)
(237,313)(238,314)(239,316)(240,315)(241,337)(242,338)(243,340)(244,339)
(245,341)(246,342)(247,344)(248,343)(249,349)(250,350)(251,352)(252,351)
(253,345)(254,346)(255,348)(256,347)(257,369)(258,370)(259,372)(260,371)
(261,373)(262,374)(263,376)(264,375)(265,381)(266,382)(267,384)(268,383)
(269,377)(270,378)(271,380)(272,379)(273,353)(274,354)(275,356)(276,355)
(277,357)(278,358)(279,360)(280,359)(281,365)(282,366)(283,368)(284,367)
(285,361)(286,362)(287,364)(288,363);;
s1 := ( 1,321)( 2,323)( 3,322)( 4,324)( 5,331)( 6,329)( 7,332)( 8,330)
( 9,326)( 10,328)( 11,325)( 12,327)( 13,336)( 14,334)( 15,335)( 16,333)
( 17,305)( 18,307)( 19,306)( 20,308)( 21,315)( 22,313)( 23,316)( 24,314)
( 25,310)( 26,312)( 27,309)( 28,311)( 29,320)( 30,318)( 31,319)( 32,317)
( 33,289)( 34,291)( 35,290)( 36,292)( 37,299)( 38,297)( 39,300)( 40,298)
( 41,294)( 42,296)( 43,293)( 44,295)( 45,304)( 46,302)( 47,303)( 48,301)
( 49,369)( 50,371)( 51,370)( 52,372)( 53,379)( 54,377)( 55,380)( 56,378)
( 57,374)( 58,376)( 59,373)( 60,375)( 61,384)( 62,382)( 63,383)( 64,381)
( 65,353)( 66,355)( 67,354)( 68,356)( 69,363)( 70,361)( 71,364)( 72,362)
( 73,358)( 74,360)( 75,357)( 76,359)( 77,368)( 78,366)( 79,367)( 80,365)
( 81,337)( 82,339)( 83,338)( 84,340)( 85,347)( 86,345)( 87,348)( 88,346)
( 89,342)( 90,344)( 91,341)( 92,343)( 93,352)( 94,350)( 95,351)( 96,349)
( 97,225)( 98,227)( 99,226)(100,228)(101,235)(102,233)(103,236)(104,234)
(105,230)(106,232)(107,229)(108,231)(109,240)(110,238)(111,239)(112,237)
(113,209)(114,211)(115,210)(116,212)(117,219)(118,217)(119,220)(120,218)
(121,214)(122,216)(123,213)(124,215)(125,224)(126,222)(127,223)(128,221)
(129,193)(130,195)(131,194)(132,196)(133,203)(134,201)(135,204)(136,202)
(137,198)(138,200)(139,197)(140,199)(141,208)(142,206)(143,207)(144,205)
(145,273)(146,275)(147,274)(148,276)(149,283)(150,281)(151,284)(152,282)
(153,278)(154,280)(155,277)(156,279)(157,288)(158,286)(159,287)(160,285)
(161,257)(162,259)(163,258)(164,260)(165,267)(166,265)(167,268)(168,266)
(169,262)(170,264)(171,261)(172,263)(173,272)(174,270)(175,271)(176,269)
(177,241)(178,243)(179,242)(180,244)(181,251)(182,249)(183,252)(184,250)
(185,246)(186,248)(187,245)(188,247)(189,256)(190,254)(191,255)(192,253);;
s2 := ( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 49)( 6, 50)( 7, 51)( 8, 52)
( 9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 57)( 14, 58)( 15, 59)( 16, 60)
( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 65)( 22, 66)( 23, 67)( 24, 68)
( 25, 77)( 26, 78)( 27, 79)( 28, 80)( 29, 73)( 30, 74)( 31, 75)( 32, 76)
( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 81)( 38, 82)( 39, 83)( 40, 84)
( 41, 93)( 42, 94)( 43, 95)( 44, 96)( 45, 89)( 46, 90)( 47, 91)( 48, 92)
( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)(104,148)
(105,157)(106,158)(107,159)(108,160)(109,153)(110,154)(111,155)(112,156)
(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)(120,164)
(121,173)(122,174)(123,175)(124,176)(125,169)(126,170)(127,171)(128,172)
(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)(136,180)
(137,189)(138,190)(139,191)(140,192)(141,185)(142,186)(143,187)(144,188)
(193,245)(194,246)(195,247)(196,248)(197,241)(198,242)(199,243)(200,244)
(201,253)(202,254)(203,255)(204,256)(205,249)(206,250)(207,251)(208,252)
(209,261)(210,262)(211,263)(212,264)(213,257)(214,258)(215,259)(216,260)
(217,269)(218,270)(219,271)(220,272)(221,265)(222,266)(223,267)(224,268)
(225,277)(226,278)(227,279)(228,280)(229,273)(230,274)(231,275)(232,276)
(233,285)(234,286)(235,287)(236,288)(237,281)(238,282)(239,283)(240,284)
(289,341)(290,342)(291,343)(292,344)(293,337)(294,338)(295,339)(296,340)
(297,349)(298,350)(299,351)(300,352)(301,345)(302,346)(303,347)(304,348)
(305,357)(306,358)(307,359)(308,360)(309,353)(310,354)(311,355)(312,356)
(313,365)(314,366)(315,367)(316,368)(317,361)(318,362)(319,363)(320,364)
(321,373)(322,374)(323,375)(324,376)(325,369)(326,370)(327,371)(328,372)
(329,381)(330,382)(331,383)(332,384)(333,377)(334,378)(335,379)(336,380);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(384)!( 3, 4)( 7, 8)( 9, 13)( 10, 14)( 11, 16)( 12, 15)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 45)
( 26, 46)( 27, 48)( 28, 47)( 29, 41)( 30, 42)( 31, 44)( 32, 43)( 51, 52)
( 55, 56)( 57, 61)( 58, 62)( 59, 64)( 60, 63)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 93)( 74, 94)( 75, 96)
( 76, 95)( 77, 89)( 78, 90)( 79, 92)( 80, 91)( 97,145)( 98,146)( 99,148)
(100,147)(101,149)(102,150)(103,152)(104,151)(105,157)(106,158)(107,160)
(108,159)(109,153)(110,154)(111,156)(112,155)(113,177)(114,178)(115,180)
(116,179)(117,181)(118,182)(119,184)(120,183)(121,189)(122,190)(123,192)
(124,191)(125,185)(126,186)(127,188)(128,187)(129,161)(130,162)(131,164)
(132,163)(133,165)(134,166)(135,168)(136,167)(137,173)(138,174)(139,176)
(140,175)(141,169)(142,170)(143,172)(144,171)(193,289)(194,290)(195,292)
(196,291)(197,293)(198,294)(199,296)(200,295)(201,301)(202,302)(203,304)
(204,303)(205,297)(206,298)(207,300)(208,299)(209,321)(210,322)(211,324)
(212,323)(213,325)(214,326)(215,328)(216,327)(217,333)(218,334)(219,336)
(220,335)(221,329)(222,330)(223,332)(224,331)(225,305)(226,306)(227,308)
(228,307)(229,309)(230,310)(231,312)(232,311)(233,317)(234,318)(235,320)
(236,319)(237,313)(238,314)(239,316)(240,315)(241,337)(242,338)(243,340)
(244,339)(245,341)(246,342)(247,344)(248,343)(249,349)(250,350)(251,352)
(252,351)(253,345)(254,346)(255,348)(256,347)(257,369)(258,370)(259,372)
(260,371)(261,373)(262,374)(263,376)(264,375)(265,381)(266,382)(267,384)
(268,383)(269,377)(270,378)(271,380)(272,379)(273,353)(274,354)(275,356)
(276,355)(277,357)(278,358)(279,360)(280,359)(281,365)(282,366)(283,368)
(284,367)(285,361)(286,362)(287,364)(288,363);
s1 := Sym(384)!( 1,321)( 2,323)( 3,322)( 4,324)( 5,331)( 6,329)( 7,332)
( 8,330)( 9,326)( 10,328)( 11,325)( 12,327)( 13,336)( 14,334)( 15,335)
( 16,333)( 17,305)( 18,307)( 19,306)( 20,308)( 21,315)( 22,313)( 23,316)
( 24,314)( 25,310)( 26,312)( 27,309)( 28,311)( 29,320)( 30,318)( 31,319)
( 32,317)( 33,289)( 34,291)( 35,290)( 36,292)( 37,299)( 38,297)( 39,300)
( 40,298)( 41,294)( 42,296)( 43,293)( 44,295)( 45,304)( 46,302)( 47,303)
( 48,301)( 49,369)( 50,371)( 51,370)( 52,372)( 53,379)( 54,377)( 55,380)
( 56,378)( 57,374)( 58,376)( 59,373)( 60,375)( 61,384)( 62,382)( 63,383)
( 64,381)( 65,353)( 66,355)( 67,354)( 68,356)( 69,363)( 70,361)( 71,364)
( 72,362)( 73,358)( 74,360)( 75,357)( 76,359)( 77,368)( 78,366)( 79,367)
( 80,365)( 81,337)( 82,339)( 83,338)( 84,340)( 85,347)( 86,345)( 87,348)
( 88,346)( 89,342)( 90,344)( 91,341)( 92,343)( 93,352)( 94,350)( 95,351)
( 96,349)( 97,225)( 98,227)( 99,226)(100,228)(101,235)(102,233)(103,236)
(104,234)(105,230)(106,232)(107,229)(108,231)(109,240)(110,238)(111,239)
(112,237)(113,209)(114,211)(115,210)(116,212)(117,219)(118,217)(119,220)
(120,218)(121,214)(122,216)(123,213)(124,215)(125,224)(126,222)(127,223)
(128,221)(129,193)(130,195)(131,194)(132,196)(133,203)(134,201)(135,204)
(136,202)(137,198)(138,200)(139,197)(140,199)(141,208)(142,206)(143,207)
(144,205)(145,273)(146,275)(147,274)(148,276)(149,283)(150,281)(151,284)
(152,282)(153,278)(154,280)(155,277)(156,279)(157,288)(158,286)(159,287)
(160,285)(161,257)(162,259)(163,258)(164,260)(165,267)(166,265)(167,268)
(168,266)(169,262)(170,264)(171,261)(172,263)(173,272)(174,270)(175,271)
(176,269)(177,241)(178,243)(179,242)(180,244)(181,251)(182,249)(183,252)
(184,250)(185,246)(186,248)(187,245)(188,247)(189,256)(190,254)(191,255)
(192,253);
s2 := Sym(384)!( 1, 53)( 2, 54)( 3, 55)( 4, 56)( 5, 49)( 6, 50)( 7, 51)
( 8, 52)( 9, 61)( 10, 62)( 11, 63)( 12, 64)( 13, 57)( 14, 58)( 15, 59)
( 16, 60)( 17, 69)( 18, 70)( 19, 71)( 20, 72)( 21, 65)( 22, 66)( 23, 67)
( 24, 68)( 25, 77)( 26, 78)( 27, 79)( 28, 80)( 29, 73)( 30, 74)( 31, 75)
( 32, 76)( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 81)( 38, 82)( 39, 83)
( 40, 84)( 41, 93)( 42, 94)( 43, 95)( 44, 96)( 45, 89)( 46, 90)( 47, 91)
( 48, 92)( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)
(104,148)(105,157)(106,158)(107,159)(108,160)(109,153)(110,154)(111,155)
(112,156)(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)
(120,164)(121,173)(122,174)(123,175)(124,176)(125,169)(126,170)(127,171)
(128,172)(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)
(136,180)(137,189)(138,190)(139,191)(140,192)(141,185)(142,186)(143,187)
(144,188)(193,245)(194,246)(195,247)(196,248)(197,241)(198,242)(199,243)
(200,244)(201,253)(202,254)(203,255)(204,256)(205,249)(206,250)(207,251)
(208,252)(209,261)(210,262)(211,263)(212,264)(213,257)(214,258)(215,259)
(216,260)(217,269)(218,270)(219,271)(220,272)(221,265)(222,266)(223,267)
(224,268)(225,277)(226,278)(227,279)(228,280)(229,273)(230,274)(231,275)
(232,276)(233,285)(234,286)(235,287)(236,288)(237,281)(238,282)(239,283)
(240,284)(289,341)(290,342)(291,343)(292,344)(293,337)(294,338)(295,339)
(296,340)(297,349)(298,350)(299,351)(300,352)(301,345)(302,346)(303,347)
(304,348)(305,357)(306,358)(307,359)(308,360)(309,353)(310,354)(311,355)
(312,356)(313,365)(314,366)(315,367)(316,368)(317,361)(318,362)(319,363)
(320,364)(321,373)(322,374)(323,375)(324,376)(325,369)(326,370)(327,371)
(328,372)(329,381)(330,382)(331,383)(332,384)(333,377)(334,378)(335,379)
(336,380);
poly := sub<Sym(384)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope