Polytope of Type {8,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6}*768f
if this polytope has a name.
Group : SmallGroup(768,1086324)
Rank : 3
Schlafli Type : {8,6}
Number of vertices, edges, etc : 64, 192, 48
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,6}*384d
   4-fold quotients : {8,6}*192a, {8,6}*192b
   8-fold quotients : {8,3}*96, {4,6}*96
   16-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {4,3}*24, {2,6}*24
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,124)(  2,123)(  3,122)(  4,121)(  5,128)(  6,127)(  7,126)(  8,125)
(  9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)( 16,117)
( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)( 24,107)
( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)( 40,157)
( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)( 48,149)
( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)( 56,139)
( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)( 64,131)
( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)( 72,189)
( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)( 80,181)
( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)( 88,171)
( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)( 96,163);;
s1 := (  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s2 := (  1, 65)(  2, 67)(  3, 66)(  4, 68)(  5, 72)(  6, 70)(  7, 71)(  8, 69)
(  9, 86)( 10, 88)( 11, 85)( 12, 87)( 13, 83)( 14, 81)( 15, 84)( 16, 82)
( 17, 78)( 18, 80)( 19, 77)( 20, 79)( 21, 75)( 22, 73)( 23, 76)( 24, 74)
( 25, 95)( 26, 93)( 27, 96)( 28, 94)( 29, 90)( 30, 92)( 31, 89)( 32, 91)
( 34, 35)( 37, 40)( 41, 54)( 42, 56)( 43, 53)( 44, 55)( 45, 51)( 46, 49)
( 47, 52)( 48, 50)( 57, 63)( 58, 61)( 59, 64)( 60, 62)( 97,167)( 98,165)
( 99,168)(100,166)(101,162)(102,164)(103,161)(104,163)(105,180)(106,178)
(107,179)(108,177)(109,181)(110,183)(111,182)(112,184)(113,172)(114,170)
(115,171)(116,169)(117,173)(118,175)(119,174)(120,176)(121,185)(122,187)
(123,186)(124,188)(125,192)(126,190)(127,191)(128,189)(129,135)(130,133)
(131,136)(132,134)(137,148)(138,146)(139,147)(140,145)(141,149)(142,151)
(143,150)(144,152)(154,155)(157,160);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1,124)(  2,123)(  3,122)(  4,121)(  5,128)(  6,127)(  7,126)
(  8,125)(  9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)
( 16,117)( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)
( 24,107)( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)
( 40,157)( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)
( 48,149)( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)
( 56,139)( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)
( 64,131)( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)
( 72,189)( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)
( 80,181)( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)
( 88,171)( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)
( 96,163);
s1 := Sym(192)!(  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s2 := Sym(192)!(  1, 65)(  2, 67)(  3, 66)(  4, 68)(  5, 72)(  6, 70)(  7, 71)
(  8, 69)(  9, 86)( 10, 88)( 11, 85)( 12, 87)( 13, 83)( 14, 81)( 15, 84)
( 16, 82)( 17, 78)( 18, 80)( 19, 77)( 20, 79)( 21, 75)( 22, 73)( 23, 76)
( 24, 74)( 25, 95)( 26, 93)( 27, 96)( 28, 94)( 29, 90)( 30, 92)( 31, 89)
( 32, 91)( 34, 35)( 37, 40)( 41, 54)( 42, 56)( 43, 53)( 44, 55)( 45, 51)
( 46, 49)( 47, 52)( 48, 50)( 57, 63)( 58, 61)( 59, 64)( 60, 62)( 97,167)
( 98,165)( 99,168)(100,166)(101,162)(102,164)(103,161)(104,163)(105,180)
(106,178)(107,179)(108,177)(109,181)(110,183)(111,182)(112,184)(113,172)
(114,170)(115,171)(116,169)(117,173)(118,175)(119,174)(120,176)(121,185)
(122,187)(123,186)(124,188)(125,192)(126,190)(127,191)(128,189)(129,135)
(130,133)(131,136)(132,134)(137,148)(138,146)(139,147)(140,145)(141,149)
(142,151)(143,150)(144,152)(154,155)(157,160);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope