include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*768f
if this polytope has a name.
Group : SmallGroup(768,1086324)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 48, 192, 64
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*384d
4-fold quotients : {6,8}*192a, {6,8}*192b
8-fold quotients : {3,8}*96, {6,4}*96
16-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
32-fold quotients : {3,4}*24, {6,2}*24
64-fold quotients : {3,2}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s1 := ( 1, 65)( 2, 67)( 3, 66)( 4, 68)( 5, 72)( 6, 70)( 7, 71)( 8, 69)
( 9, 86)( 10, 88)( 11, 85)( 12, 87)( 13, 83)( 14, 81)( 15, 84)( 16, 82)
( 17, 78)( 18, 80)( 19, 77)( 20, 79)( 21, 75)( 22, 73)( 23, 76)( 24, 74)
( 25, 95)( 26, 93)( 27, 96)( 28, 94)( 29, 90)( 30, 92)( 31, 89)( 32, 91)
( 34, 35)( 37, 40)( 41, 54)( 42, 56)( 43, 53)( 44, 55)( 45, 51)( 46, 49)
( 47, 52)( 48, 50)( 57, 63)( 58, 61)( 59, 64)( 60, 62)( 97,167)( 98,165)
( 99,168)(100,166)(101,162)(102,164)(103,161)(104,163)(105,180)(106,178)
(107,179)(108,177)(109,181)(110,183)(111,182)(112,184)(113,172)(114,170)
(115,171)(116,169)(117,173)(118,175)(119,174)(120,176)(121,185)(122,187)
(123,186)(124,188)(125,192)(126,190)(127,191)(128,189)(129,135)(130,133)
(131,136)(132,134)(137,148)(138,146)(139,147)(140,145)(141,149)(142,151)
(143,150)(144,152)(154,155)(157,160);;
s2 := ( 1,105)( 2,106)( 3,107)( 4,108)( 5,109)( 6,110)( 7,111)( 8,112)
( 9,103)( 10,104)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 97)( 16, 98)
( 17,123)( 18,124)( 19,121)( 20,122)( 21,127)( 22,128)( 23,125)( 24,126)
( 25,117)( 26,118)( 27,119)( 28,120)( 29,113)( 30,114)( 31,115)( 32,116)
( 33,137)( 34,138)( 35,139)( 36,140)( 37,141)( 38,142)( 39,143)( 40,144)
( 41,135)( 42,136)( 43,133)( 44,134)( 45,131)( 46,132)( 47,129)( 48,130)
( 49,155)( 50,156)( 51,153)( 52,154)( 53,159)( 54,160)( 55,157)( 56,158)
( 57,149)( 58,150)( 59,151)( 60,152)( 61,145)( 62,146)( 63,147)( 64,148)
( 65,169)( 66,170)( 67,171)( 68,172)( 69,173)( 70,174)( 71,175)( 72,176)
( 73,167)( 74,168)( 75,165)( 76,166)( 77,163)( 78,164)( 79,161)( 80,162)
( 81,187)( 82,188)( 83,185)( 84,186)( 85,191)( 86,192)( 87,189)( 88,190)
( 89,181)( 90,182)( 91,183)( 92,184)( 93,177)( 94,178)( 95,179)( 96,180);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s1 := Sym(192)!( 1, 65)( 2, 67)( 3, 66)( 4, 68)( 5, 72)( 6, 70)( 7, 71)
( 8, 69)( 9, 86)( 10, 88)( 11, 85)( 12, 87)( 13, 83)( 14, 81)( 15, 84)
( 16, 82)( 17, 78)( 18, 80)( 19, 77)( 20, 79)( 21, 75)( 22, 73)( 23, 76)
( 24, 74)( 25, 95)( 26, 93)( 27, 96)( 28, 94)( 29, 90)( 30, 92)( 31, 89)
( 32, 91)( 34, 35)( 37, 40)( 41, 54)( 42, 56)( 43, 53)( 44, 55)( 45, 51)
( 46, 49)( 47, 52)( 48, 50)( 57, 63)( 58, 61)( 59, 64)( 60, 62)( 97,167)
( 98,165)( 99,168)(100,166)(101,162)(102,164)(103,161)(104,163)(105,180)
(106,178)(107,179)(108,177)(109,181)(110,183)(111,182)(112,184)(113,172)
(114,170)(115,171)(116,169)(117,173)(118,175)(119,174)(120,176)(121,185)
(122,187)(123,186)(124,188)(125,192)(126,190)(127,191)(128,189)(129,135)
(130,133)(131,136)(132,134)(137,148)(138,146)(139,147)(140,145)(141,149)
(142,151)(143,150)(144,152)(154,155)(157,160);
s2 := Sym(192)!( 1,105)( 2,106)( 3,107)( 4,108)( 5,109)( 6,110)( 7,111)
( 8,112)( 9,103)( 10,104)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 97)
( 16, 98)( 17,123)( 18,124)( 19,121)( 20,122)( 21,127)( 22,128)( 23,125)
( 24,126)( 25,117)( 26,118)( 27,119)( 28,120)( 29,113)( 30,114)( 31,115)
( 32,116)( 33,137)( 34,138)( 35,139)( 36,140)( 37,141)( 38,142)( 39,143)
( 40,144)( 41,135)( 42,136)( 43,133)( 44,134)( 45,131)( 46,132)( 47,129)
( 48,130)( 49,155)( 50,156)( 51,153)( 52,154)( 53,159)( 54,160)( 55,157)
( 56,158)( 57,149)( 58,150)( 59,151)( 60,152)( 61,145)( 62,146)( 63,147)
( 64,148)( 65,169)( 66,170)( 67,171)( 68,172)( 69,173)( 70,174)( 71,175)
( 72,176)( 73,167)( 74,168)( 75,165)( 76,166)( 77,163)( 78,164)( 79,161)
( 80,162)( 81,187)( 82,188)( 83,185)( 84,186)( 85,191)( 86,192)( 87,189)
( 88,190)( 89,181)( 90,182)( 91,183)( 92,184)( 93,177)( 94,178)( 95,179)
( 96,180);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope