include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,6}*768i
if this polytope has a name.
Group : SmallGroup(768,1086333)
Rank : 3
Schlafli Type : {8,6}
Number of vertices, edges, etc : 64, 192, 48
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,6}*384d
4-fold quotients : {8,6}*192a, {8,6}*192c
8-fold quotients : {4,6}*96
16-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
32-fold quotients : {4,3}*24, {2,6}*24
64-fold quotients : {2,3}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,126)( 2,125)( 3,128)( 4,127)( 5,122)( 6,121)( 7,124)( 8,123)
( 9,118)( 10,117)( 11,120)( 12,119)( 13,114)( 14,113)( 15,116)( 16,115)
( 17,108)( 18,107)( 19,106)( 20,105)( 21,112)( 22,111)( 23,110)( 24,109)
( 25,100)( 26, 99)( 27, 98)( 28, 97)( 29,104)( 30,103)( 31,102)( 32,101)
( 33,158)( 34,157)( 35,160)( 36,159)( 37,154)( 38,153)( 39,156)( 40,155)
( 41,150)( 42,149)( 43,152)( 44,151)( 45,146)( 46,145)( 47,148)( 48,147)
( 49,140)( 50,139)( 51,138)( 52,137)( 53,144)( 54,143)( 55,142)( 56,141)
( 57,132)( 58,131)( 59,130)( 60,129)( 61,136)( 62,135)( 63,134)( 64,133)
( 65,190)( 66,189)( 67,192)( 68,191)( 69,186)( 70,185)( 71,188)( 72,187)
( 73,182)( 74,181)( 75,184)( 76,183)( 77,178)( 78,177)( 79,180)( 80,179)
( 81,172)( 82,171)( 83,170)( 84,169)( 85,176)( 86,175)( 87,174)( 88,173)
( 89,164)( 90,163)( 91,162)( 92,161)( 93,168)( 94,167)( 95,166)( 96,165);;
s1 := ( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 99,100)(101,102)
(105,111)(106,112)(107,110)(108,109)(113,124)(114,123)(115,121)(116,122)
(117,127)(118,128)(119,126)(120,125)(129,161)(130,162)(131,164)(132,163)
(133,166)(134,165)(135,167)(136,168)(137,175)(138,176)(139,174)(140,173)
(141,172)(142,171)(143,169)(144,170)(145,188)(146,187)(147,185)(148,186)
(149,191)(150,192)(151,190)(152,189)(153,179)(154,180)(155,178)(156,177)
(157,184)(158,183)(159,181)(160,182);;
s2 := ( 1,161)( 2,163)( 3,162)( 4,164)( 5,168)( 6,166)( 7,167)( 8,165)
( 9,182)( 10,184)( 11,181)( 12,183)( 13,179)( 14,177)( 15,180)( 16,178)
( 17,174)( 18,176)( 19,173)( 20,175)( 21,171)( 22,169)( 23,172)( 24,170)
( 25,191)( 26,189)( 27,192)( 28,190)( 29,186)( 30,188)( 31,185)( 32,187)
( 33,129)( 34,131)( 35,130)( 36,132)( 37,136)( 38,134)( 39,135)( 40,133)
( 41,150)( 42,152)( 43,149)( 44,151)( 45,147)( 46,145)( 47,148)( 48,146)
( 49,142)( 50,144)( 51,141)( 52,143)( 53,139)( 54,137)( 55,140)( 56,138)
( 57,159)( 58,157)( 59,160)( 60,158)( 61,154)( 62,156)( 63,153)( 64,155)
( 65, 97)( 66, 99)( 67, 98)( 68,100)( 69,104)( 70,102)( 71,103)( 72,101)
( 73,118)( 74,120)( 75,117)( 76,119)( 77,115)( 78,113)( 79,116)( 80,114)
( 81,110)( 82,112)( 83,109)( 84,111)( 85,107)( 86,105)( 87,108)( 88,106)
( 89,127)( 90,125)( 91,128)( 92,126)( 93,122)( 94,124)( 95,121)( 96,123);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 1,126)( 2,125)( 3,128)( 4,127)( 5,122)( 6,121)( 7,124)
( 8,123)( 9,118)( 10,117)( 11,120)( 12,119)( 13,114)( 14,113)( 15,116)
( 16,115)( 17,108)( 18,107)( 19,106)( 20,105)( 21,112)( 22,111)( 23,110)
( 24,109)( 25,100)( 26, 99)( 27, 98)( 28, 97)( 29,104)( 30,103)( 31,102)
( 32,101)( 33,158)( 34,157)( 35,160)( 36,159)( 37,154)( 38,153)( 39,156)
( 40,155)( 41,150)( 42,149)( 43,152)( 44,151)( 45,146)( 46,145)( 47,148)
( 48,147)( 49,140)( 50,139)( 51,138)( 52,137)( 53,144)( 54,143)( 55,142)
( 56,141)( 57,132)( 58,131)( 59,130)( 60,129)( 61,136)( 62,135)( 63,134)
( 64,133)( 65,190)( 66,189)( 67,192)( 68,191)( 69,186)( 70,185)( 71,188)
( 72,187)( 73,182)( 74,181)( 75,184)( 76,183)( 77,178)( 78,177)( 79,180)
( 80,179)( 81,172)( 82,171)( 83,170)( 84,169)( 85,176)( 86,175)( 87,174)
( 88,173)( 89,164)( 90,163)( 91,162)( 92,161)( 93,168)( 94,167)( 95,166)
( 96,165);
s1 := Sym(192)!( 3, 4)( 5, 6)( 9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 99,100)
(101,102)(105,111)(106,112)(107,110)(108,109)(113,124)(114,123)(115,121)
(116,122)(117,127)(118,128)(119,126)(120,125)(129,161)(130,162)(131,164)
(132,163)(133,166)(134,165)(135,167)(136,168)(137,175)(138,176)(139,174)
(140,173)(141,172)(142,171)(143,169)(144,170)(145,188)(146,187)(147,185)
(148,186)(149,191)(150,192)(151,190)(152,189)(153,179)(154,180)(155,178)
(156,177)(157,184)(158,183)(159,181)(160,182);
s2 := Sym(192)!( 1,161)( 2,163)( 3,162)( 4,164)( 5,168)( 6,166)( 7,167)
( 8,165)( 9,182)( 10,184)( 11,181)( 12,183)( 13,179)( 14,177)( 15,180)
( 16,178)( 17,174)( 18,176)( 19,173)( 20,175)( 21,171)( 22,169)( 23,172)
( 24,170)( 25,191)( 26,189)( 27,192)( 28,190)( 29,186)( 30,188)( 31,185)
( 32,187)( 33,129)( 34,131)( 35,130)( 36,132)( 37,136)( 38,134)( 39,135)
( 40,133)( 41,150)( 42,152)( 43,149)( 44,151)( 45,147)( 46,145)( 47,148)
( 48,146)( 49,142)( 50,144)( 51,141)( 52,143)( 53,139)( 54,137)( 55,140)
( 56,138)( 57,159)( 58,157)( 59,160)( 60,158)( 61,154)( 62,156)( 63,153)
( 64,155)( 65, 97)( 66, 99)( 67, 98)( 68,100)( 69,104)( 70,102)( 71,103)
( 72,101)( 73,118)( 74,120)( 75,117)( 76,119)( 77,115)( 78,113)( 79,116)
( 80,114)( 81,110)( 82,112)( 83,109)( 84,111)( 85,107)( 86,105)( 87,108)
( 88,106)( 89,127)( 90,125)( 91,128)( 92,126)( 93,122)( 94,124)( 95,121)
( 96,123);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope