Polytope of Type {6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6}*768c
if this polytope has a name.
Group : SmallGroup(768,1086333)
Rank : 3
Schlafli Type : {6,6}
Number of vertices, edges, etc : 64, 192, 64
Order of s0s1s2 : 8
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6}*384e
   4-fold quotients : {3,6}*192, {6,6}*192b
   8-fold quotients : {6,6}*96
   16-fold quotients : {3,6}*48, {6,3}*48
   32-fold quotients : {3,3}*24
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s1 := (  1, 65)(  2, 67)(  3, 66)(  4, 68)(  5, 72)(  6, 70)(  7, 71)(  8, 69)
(  9, 88)( 10, 86)( 11, 87)( 12, 85)( 13, 81)( 14, 83)( 15, 82)( 16, 84)
( 17, 77)( 18, 79)( 19, 78)( 20, 80)( 21, 76)( 22, 74)( 23, 75)( 24, 73)
( 25, 94)( 26, 96)( 27, 93)( 28, 95)( 29, 91)( 30, 89)( 31, 92)( 32, 90)
( 34, 35)( 37, 40)( 41, 56)( 42, 54)( 43, 55)( 44, 53)( 45, 49)( 46, 51)
( 47, 50)( 48, 52)( 57, 62)( 58, 64)( 59, 61)( 60, 63)( 97,161)( 98,163)
( 99,162)(100,164)(101,168)(102,166)(103,167)(104,165)(105,184)(106,182)
(107,183)(108,181)(109,177)(110,179)(111,178)(112,180)(113,173)(114,175)
(115,174)(116,176)(117,172)(118,170)(119,171)(120,169)(121,190)(122,192)
(123,189)(124,191)(125,187)(126,185)(127,188)(128,186)(130,131)(133,136)
(137,152)(138,150)(139,151)(140,149)(141,145)(142,147)(143,146)(144,148)
(153,158)(154,160)(155,157)(156,159);;
s2 := (  1,112)(  2,111)(  3,109)(  4,110)(  5,107)(  6,108)(  7,106)(  8,105)
(  9,104)( 10,103)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 98)( 16, 97)
( 17,113)( 18,114)( 19,116)( 20,115)( 21,118)( 22,117)( 23,119)( 24,120)
( 25,128)( 26,127)( 27,125)( 28,126)( 29,123)( 30,124)( 31,122)( 32,121)
( 33,176)( 34,175)( 35,173)( 36,174)( 37,171)( 38,172)( 39,170)( 40,169)
( 41,168)( 42,167)( 43,165)( 44,166)( 45,163)( 46,164)( 47,162)( 48,161)
( 49,177)( 50,178)( 51,180)( 52,179)( 53,182)( 54,181)( 55,183)( 56,184)
( 57,192)( 58,191)( 59,189)( 60,190)( 61,187)( 62,188)( 63,186)( 64,185)
( 65,144)( 66,143)( 67,141)( 68,142)( 69,139)( 70,140)( 71,138)( 72,137)
( 73,136)( 74,135)( 75,133)( 76,134)( 77,131)( 78,132)( 79,130)( 80,129)
( 81,145)( 82,146)( 83,148)( 84,147)( 85,150)( 86,149)( 87,151)( 88,152)
( 89,160)( 90,159)( 91,157)( 92,158)( 93,155)( 94,156)( 95,154)( 96,153);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s1 := Sym(192)!(  1, 65)(  2, 67)(  3, 66)(  4, 68)(  5, 72)(  6, 70)(  7, 71)
(  8, 69)(  9, 88)( 10, 86)( 11, 87)( 12, 85)( 13, 81)( 14, 83)( 15, 82)
( 16, 84)( 17, 77)( 18, 79)( 19, 78)( 20, 80)( 21, 76)( 22, 74)( 23, 75)
( 24, 73)( 25, 94)( 26, 96)( 27, 93)( 28, 95)( 29, 91)( 30, 89)( 31, 92)
( 32, 90)( 34, 35)( 37, 40)( 41, 56)( 42, 54)( 43, 55)( 44, 53)( 45, 49)
( 46, 51)( 47, 50)( 48, 52)( 57, 62)( 58, 64)( 59, 61)( 60, 63)( 97,161)
( 98,163)( 99,162)(100,164)(101,168)(102,166)(103,167)(104,165)(105,184)
(106,182)(107,183)(108,181)(109,177)(110,179)(111,178)(112,180)(113,173)
(114,175)(115,174)(116,176)(117,172)(118,170)(119,171)(120,169)(121,190)
(122,192)(123,189)(124,191)(125,187)(126,185)(127,188)(128,186)(130,131)
(133,136)(137,152)(138,150)(139,151)(140,149)(141,145)(142,147)(143,146)
(144,148)(153,158)(154,160)(155,157)(156,159);
s2 := Sym(192)!(  1,112)(  2,111)(  3,109)(  4,110)(  5,107)(  6,108)(  7,106)
(  8,105)(  9,104)( 10,103)( 11,101)( 12,102)( 13, 99)( 14,100)( 15, 98)
( 16, 97)( 17,113)( 18,114)( 19,116)( 20,115)( 21,118)( 22,117)( 23,119)
( 24,120)( 25,128)( 26,127)( 27,125)( 28,126)( 29,123)( 30,124)( 31,122)
( 32,121)( 33,176)( 34,175)( 35,173)( 36,174)( 37,171)( 38,172)( 39,170)
( 40,169)( 41,168)( 42,167)( 43,165)( 44,166)( 45,163)( 46,164)( 47,162)
( 48,161)( 49,177)( 50,178)( 51,180)( 52,179)( 53,182)( 54,181)( 55,183)
( 56,184)( 57,192)( 58,191)( 59,189)( 60,190)( 61,187)( 62,188)( 63,186)
( 64,185)( 65,144)( 66,143)( 67,141)( 68,142)( 69,139)( 70,140)( 71,138)
( 72,137)( 73,136)( 74,135)( 75,133)( 76,134)( 77,131)( 78,132)( 79,130)
( 80,129)( 81,145)( 82,146)( 83,148)( 84,147)( 85,150)( 86,149)( 87,151)
( 88,152)( 89,160)( 90,159)( 91,157)( 92,158)( 93,155)( 94,156)( 95,154)
( 96,153);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope