include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24}*768l
if this polytope has a name.
Group : SmallGroup(768,1087808)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 16, 192, 96
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,12}*384d
4-fold quotients : {4,12}*192b, {4,6}*192b, {4,12}*192c
8-fold quotients : {4,12}*96a, {4,12}*96b, {4,12}*96c, {4,6}*96
16-fold quotients : {2,12}*48, {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
24-fold quotients : {4,4}*32
32-fold quotients : {4,3}*24, {2,6}*24
48-fold quotients : {2,4}*16, {4,2}*16
64-fold quotients : {2,3}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 31)( 2, 32)( 3, 29)( 4, 30)( 5, 28)( 6, 27)( 7, 26)( 8, 25)
( 9, 39)( 10, 40)( 11, 37)( 12, 38)( 13, 36)( 14, 35)( 15, 34)( 16, 33)
( 17, 47)( 18, 48)( 19, 45)( 20, 46)( 21, 44)( 22, 43)( 23, 42)( 24, 41)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)( 56, 74)
( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 83)( 62, 84)( 63, 81)( 64, 82)
( 65, 96)( 66, 95)( 67, 94)( 68, 93)( 69, 91)( 70, 92)( 71, 89)( 72, 90)
( 97,175)( 98,176)( 99,173)(100,174)(101,172)(102,171)(103,170)(104,169)
(105,183)(106,184)(107,181)(108,182)(109,180)(110,179)(111,178)(112,177)
(113,191)(114,192)(115,189)(116,190)(117,188)(118,187)(119,186)(120,185)
(121,152)(122,151)(123,150)(124,149)(125,147)(126,148)(127,145)(128,146)
(129,160)(130,159)(131,158)(132,157)(133,155)(134,156)(135,153)(136,154)
(137,168)(138,167)(139,166)(140,165)(141,163)(142,164)(143,161)(144,162);;
s1 := ( 1,121)( 2,122)( 3,124)( 4,123)( 5,127)( 6,128)( 7,125)( 8,126)
( 9,137)( 10,138)( 11,140)( 12,139)( 13,143)( 14,144)( 15,141)( 16,142)
( 17,129)( 18,130)( 19,132)( 20,131)( 21,135)( 22,136)( 23,133)( 24,134)
( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,103)( 30,104)( 31,101)( 32,102)
( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)( 40,118)
( 41,105)( 42,106)( 43,108)( 44,107)( 45,111)( 46,112)( 47,109)( 48,110)
( 49,170)( 50,169)( 51,171)( 52,172)( 53,176)( 54,175)( 55,174)( 56,173)
( 57,186)( 58,185)( 59,187)( 60,188)( 61,192)( 62,191)( 63,190)( 64,189)
( 65,178)( 66,177)( 67,179)( 68,180)( 69,184)( 70,183)( 71,182)( 72,181)
( 73,146)( 74,145)( 75,147)( 76,148)( 77,152)( 78,151)( 79,150)( 80,149)
( 81,162)( 82,161)( 83,163)( 84,164)( 85,168)( 86,167)( 87,166)( 88,165)
( 89,154)( 90,153)( 91,155)( 92,156)( 93,160)( 94,159)( 95,158)( 96,157);;
s2 := ( 1, 17)( 2, 18)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 24)( 8, 23)
( 11, 14)( 12, 13)( 15, 16)( 25, 42)( 26, 41)( 27, 45)( 28, 46)( 29, 43)
( 30, 44)( 31, 47)( 32, 48)( 33, 34)( 35, 37)( 36, 38)( 49, 65)( 50, 66)
( 51, 70)( 52, 69)( 53, 68)( 54, 67)( 55, 72)( 56, 71)( 59, 62)( 60, 61)
( 63, 64)( 73, 90)( 74, 89)( 75, 93)( 76, 94)( 77, 91)( 78, 92)( 79, 95)
( 80, 96)( 81, 82)( 83, 85)( 84, 86)( 97,186)( 98,185)( 99,189)(100,190)
(101,187)(102,188)(103,191)(104,192)(105,178)(106,177)(107,181)(108,182)
(109,179)(110,180)(111,183)(112,184)(113,170)(114,169)(115,173)(116,174)
(117,171)(118,172)(119,175)(120,176)(121,161)(122,162)(123,166)(124,165)
(125,164)(126,163)(127,168)(128,167)(129,153)(130,154)(131,158)(132,157)
(133,156)(134,155)(135,160)(136,159)(137,145)(138,146)(139,150)(140,149)
(141,148)(142,147)(143,152)(144,151);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 1, 31)( 2, 32)( 3, 29)( 4, 30)( 5, 28)( 6, 27)( 7, 26)
( 8, 25)( 9, 39)( 10, 40)( 11, 37)( 12, 38)( 13, 36)( 14, 35)( 15, 34)
( 16, 33)( 17, 47)( 18, 48)( 19, 45)( 20, 46)( 21, 44)( 22, 43)( 23, 42)
( 24, 41)( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 75)( 54, 76)( 55, 73)
( 56, 74)( 57, 88)( 58, 87)( 59, 86)( 60, 85)( 61, 83)( 62, 84)( 63, 81)
( 64, 82)( 65, 96)( 66, 95)( 67, 94)( 68, 93)( 69, 91)( 70, 92)( 71, 89)
( 72, 90)( 97,175)( 98,176)( 99,173)(100,174)(101,172)(102,171)(103,170)
(104,169)(105,183)(106,184)(107,181)(108,182)(109,180)(110,179)(111,178)
(112,177)(113,191)(114,192)(115,189)(116,190)(117,188)(118,187)(119,186)
(120,185)(121,152)(122,151)(123,150)(124,149)(125,147)(126,148)(127,145)
(128,146)(129,160)(130,159)(131,158)(132,157)(133,155)(134,156)(135,153)
(136,154)(137,168)(138,167)(139,166)(140,165)(141,163)(142,164)(143,161)
(144,162);
s1 := Sym(192)!( 1,121)( 2,122)( 3,124)( 4,123)( 5,127)( 6,128)( 7,125)
( 8,126)( 9,137)( 10,138)( 11,140)( 12,139)( 13,143)( 14,144)( 15,141)
( 16,142)( 17,129)( 18,130)( 19,132)( 20,131)( 21,135)( 22,136)( 23,133)
( 24,134)( 25, 97)( 26, 98)( 27,100)( 28, 99)( 29,103)( 30,104)( 31,101)
( 32,102)( 33,113)( 34,114)( 35,116)( 36,115)( 37,119)( 38,120)( 39,117)
( 40,118)( 41,105)( 42,106)( 43,108)( 44,107)( 45,111)( 46,112)( 47,109)
( 48,110)( 49,170)( 50,169)( 51,171)( 52,172)( 53,176)( 54,175)( 55,174)
( 56,173)( 57,186)( 58,185)( 59,187)( 60,188)( 61,192)( 62,191)( 63,190)
( 64,189)( 65,178)( 66,177)( 67,179)( 68,180)( 69,184)( 70,183)( 71,182)
( 72,181)( 73,146)( 74,145)( 75,147)( 76,148)( 77,152)( 78,151)( 79,150)
( 80,149)( 81,162)( 82,161)( 83,163)( 84,164)( 85,168)( 86,167)( 87,166)
( 88,165)( 89,154)( 90,153)( 91,155)( 92,156)( 93,160)( 94,159)( 95,158)
( 96,157);
s2 := Sym(192)!( 1, 17)( 2, 18)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 24)
( 8, 23)( 11, 14)( 12, 13)( 15, 16)( 25, 42)( 26, 41)( 27, 45)( 28, 46)
( 29, 43)( 30, 44)( 31, 47)( 32, 48)( 33, 34)( 35, 37)( 36, 38)( 49, 65)
( 50, 66)( 51, 70)( 52, 69)( 53, 68)( 54, 67)( 55, 72)( 56, 71)( 59, 62)
( 60, 61)( 63, 64)( 73, 90)( 74, 89)( 75, 93)( 76, 94)( 77, 91)( 78, 92)
( 79, 95)( 80, 96)( 81, 82)( 83, 85)( 84, 86)( 97,186)( 98,185)( 99,189)
(100,190)(101,187)(102,188)(103,191)(104,192)(105,178)(106,177)(107,181)
(108,182)(109,179)(110,180)(111,183)(112,184)(113,170)(114,169)(115,173)
(116,174)(117,171)(118,172)(119,175)(120,176)(121,161)(122,162)(123,166)
(124,165)(125,164)(126,163)(127,168)(128,167)(129,153)(130,154)(131,158)
(132,157)(133,156)(134,155)(135,160)(136,159)(137,145)(138,146)(139,150)
(140,149)(141,148)(142,147)(143,152)(144,151);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1 >;
References : None.
to this polytope