Polytope of Type {24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,4}*768l
if this polytope has a name.
Group : SmallGroup(768,1087808)
Rank : 3
Schlafli Type : {24,4}
Number of vertices, edges, etc : 96, 192, 16
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4}*384d
   4-fold quotients : {12,4}*192b, {6,4}*192b, {12,4}*192c
   8-fold quotients : {12,4}*96a, {12,4}*96b, {12,4}*96c, {6,4}*96
   16-fold quotients : {12,2}*48, {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
   24-fold quotients : {4,4}*32
   32-fold quotients : {3,4}*24, {6,2}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 23)
( 14, 24)( 15, 21)( 16, 22)( 25, 26)( 29, 32)( 30, 31)( 33, 42)( 34, 41)
( 35, 43)( 36, 44)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 51, 52)( 53, 55)
( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)( 63, 69)
( 64, 70)( 73, 74)( 77, 80)( 78, 79)( 81, 90)( 82, 89)( 83, 91)( 84, 92)
( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 97,170)( 98,169)( 99,171)(100,172)
(101,176)(102,175)(103,174)(104,173)(105,186)(106,185)(107,187)(108,188)
(109,192)(110,191)(111,190)(112,189)(113,178)(114,177)(115,179)(116,180)
(117,184)(118,183)(119,182)(120,181)(121,145)(122,146)(123,148)(124,147)
(125,151)(126,152)(127,149)(128,150)(129,161)(130,162)(131,164)(132,163)
(133,167)(134,168)(135,165)(136,166)(137,153)(138,154)(139,156)(140,155)
(141,159)(142,160)(143,157)(144,158);;
s1 := (  1,137)(  2,138)(  3,142)(  4,141)(  5,140)(  6,139)(  7,144)(  8,143)
(  9,129)( 10,130)( 11,134)( 12,133)( 13,132)( 14,131)( 15,136)( 16,135)
( 17,121)( 18,122)( 19,126)( 20,125)( 21,124)( 22,123)( 23,128)( 24,127)
( 25,113)( 26,114)( 27,118)( 28,117)( 29,116)( 30,115)( 31,120)( 32,119)
( 33,105)( 34,106)( 35,110)( 36,109)( 37,108)( 38,107)( 39,112)( 40,111)
( 41, 97)( 42, 98)( 43,102)( 44,101)( 45,100)( 46, 99)( 47,104)( 48,103)
( 49,186)( 50,185)( 51,189)( 52,190)( 53,187)( 54,188)( 55,191)( 56,192)
( 57,178)( 58,177)( 59,181)( 60,182)( 61,179)( 62,180)( 63,183)( 64,184)
( 65,170)( 66,169)( 67,173)( 68,174)( 69,171)( 70,172)( 71,175)( 72,176)
( 73,162)( 74,161)( 75,165)( 76,166)( 77,163)( 78,164)( 79,167)( 80,168)
( 81,154)( 82,153)( 83,157)( 84,158)( 85,155)( 86,156)( 87,159)( 88,160)
( 89,146)( 90,145)( 91,149)( 92,150)( 93,147)( 94,148)( 95,151)( 96,152);;
s2 := (  1, 28)(  2, 27)(  3, 25)(  4, 26)(  5, 32)(  6, 31)(  7, 29)(  8, 30)
(  9, 36)( 10, 35)( 11, 33)( 12, 34)( 13, 40)( 14, 39)( 15, 37)( 16, 38)
( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)( 24, 46)
( 49, 75)( 50, 76)( 51, 74)( 52, 73)( 53, 79)( 54, 80)( 55, 78)( 56, 77)
( 57, 83)( 58, 84)( 59, 82)( 60, 81)( 61, 87)( 62, 88)( 63, 86)( 64, 85)
( 65, 91)( 66, 92)( 67, 90)( 68, 89)( 69, 95)( 70, 96)( 71, 94)( 72, 93)
( 97,172)( 98,171)( 99,169)(100,170)(101,176)(102,175)(103,173)(104,174)
(105,180)(106,179)(107,177)(108,178)(109,184)(110,183)(111,181)(112,182)
(113,188)(114,187)(115,185)(116,186)(117,192)(118,191)(119,189)(120,190)
(121,147)(122,148)(123,146)(124,145)(125,151)(126,152)(127,150)(128,149)
(129,155)(130,156)(131,154)(132,153)(133,159)(134,160)(135,158)(136,157)
(137,163)(138,164)(139,162)(140,161)(141,167)(142,168)(143,166)(144,165);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)
( 13, 23)( 14, 24)( 15, 21)( 16, 22)( 25, 26)( 29, 32)( 30, 31)( 33, 42)
( 34, 41)( 35, 43)( 36, 44)( 37, 48)( 38, 47)( 39, 46)( 40, 45)( 51, 52)
( 53, 55)( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)
( 63, 69)( 64, 70)( 73, 74)( 77, 80)( 78, 79)( 81, 90)( 82, 89)( 83, 91)
( 84, 92)( 85, 96)( 86, 95)( 87, 94)( 88, 93)( 97,170)( 98,169)( 99,171)
(100,172)(101,176)(102,175)(103,174)(104,173)(105,186)(106,185)(107,187)
(108,188)(109,192)(110,191)(111,190)(112,189)(113,178)(114,177)(115,179)
(116,180)(117,184)(118,183)(119,182)(120,181)(121,145)(122,146)(123,148)
(124,147)(125,151)(126,152)(127,149)(128,150)(129,161)(130,162)(131,164)
(132,163)(133,167)(134,168)(135,165)(136,166)(137,153)(138,154)(139,156)
(140,155)(141,159)(142,160)(143,157)(144,158);
s1 := Sym(192)!(  1,137)(  2,138)(  3,142)(  4,141)(  5,140)(  6,139)(  7,144)
(  8,143)(  9,129)( 10,130)( 11,134)( 12,133)( 13,132)( 14,131)( 15,136)
( 16,135)( 17,121)( 18,122)( 19,126)( 20,125)( 21,124)( 22,123)( 23,128)
( 24,127)( 25,113)( 26,114)( 27,118)( 28,117)( 29,116)( 30,115)( 31,120)
( 32,119)( 33,105)( 34,106)( 35,110)( 36,109)( 37,108)( 38,107)( 39,112)
( 40,111)( 41, 97)( 42, 98)( 43,102)( 44,101)( 45,100)( 46, 99)( 47,104)
( 48,103)( 49,186)( 50,185)( 51,189)( 52,190)( 53,187)( 54,188)( 55,191)
( 56,192)( 57,178)( 58,177)( 59,181)( 60,182)( 61,179)( 62,180)( 63,183)
( 64,184)( 65,170)( 66,169)( 67,173)( 68,174)( 69,171)( 70,172)( 71,175)
( 72,176)( 73,162)( 74,161)( 75,165)( 76,166)( 77,163)( 78,164)( 79,167)
( 80,168)( 81,154)( 82,153)( 83,157)( 84,158)( 85,155)( 86,156)( 87,159)
( 88,160)( 89,146)( 90,145)( 91,149)( 92,150)( 93,147)( 94,148)( 95,151)
( 96,152);
s2 := Sym(192)!(  1, 28)(  2, 27)(  3, 25)(  4, 26)(  5, 32)(  6, 31)(  7, 29)
(  8, 30)(  9, 36)( 10, 35)( 11, 33)( 12, 34)( 13, 40)( 14, 39)( 15, 37)
( 16, 38)( 17, 44)( 18, 43)( 19, 41)( 20, 42)( 21, 48)( 22, 47)( 23, 45)
( 24, 46)( 49, 75)( 50, 76)( 51, 74)( 52, 73)( 53, 79)( 54, 80)( 55, 78)
( 56, 77)( 57, 83)( 58, 84)( 59, 82)( 60, 81)( 61, 87)( 62, 88)( 63, 86)
( 64, 85)( 65, 91)( 66, 92)( 67, 90)( 68, 89)( 69, 95)( 70, 96)( 71, 94)
( 72, 93)( 97,172)( 98,171)( 99,169)(100,170)(101,176)(102,175)(103,173)
(104,174)(105,180)(106,179)(107,177)(108,178)(109,184)(110,183)(111,181)
(112,182)(113,188)(114,187)(115,185)(116,186)(117,192)(118,191)(119,189)
(120,190)(121,147)(122,148)(123,146)(124,145)(125,151)(126,152)(127,150)
(128,149)(129,155)(130,156)(131,154)(132,153)(133,159)(134,160)(135,158)
(136,157)(137,163)(138,164)(139,162)(140,161)(141,167)(142,168)(143,166)
(144,165);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s2*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope