include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6}*768i
if this polytope has a name.
Group : SmallGroup(768,1088551)
Rank : 3
Schlafli Type : {12,6}
Number of vertices, edges, etc : 64, 192, 32
Order of s0s1s2 : 8
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6}*384c
4-fold quotients : {6,6}*192a
8-fold quotients : {6,6}*96
16-fold quotients : {3,6}*48, {6,3}*48
32-fold quotients : {3,3}*24
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)( 20, 28)
( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)( 35, 67)( 36, 68)
( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)( 43, 75)( 44, 76)
( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)( 51, 91)( 52, 92)
( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)( 59, 83)( 60, 84)
( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)( 99,100)(101,104)(102,103)
(105,106)(107,108)(109,112)(110,111)(113,122)(114,121)(115,124)(116,123)
(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,164)(132,163)
(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,172)(140,171)
(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,188)(148,187)
(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,180)(156,179)
(157,184)(158,183)(159,182)(160,181);;
s1 := ( 1,161)( 2,162)( 3,165)( 4,166)( 5,163)( 6,164)( 7,167)( 8,168)
( 9,182)( 10,181)( 11,178)( 12,177)( 13,184)( 14,183)( 15,180)( 16,179)
( 17,172)( 18,171)( 19,176)( 20,175)( 21,170)( 22,169)( 23,174)( 24,173)
( 25,192)( 26,191)( 27,188)( 28,187)( 29,190)( 30,189)( 31,186)( 32,185)
( 33,129)( 34,130)( 35,133)( 36,134)( 37,131)( 38,132)( 39,135)( 40,136)
( 41,150)( 42,149)( 43,146)( 44,145)( 45,152)( 46,151)( 47,148)( 48,147)
( 49,140)( 50,139)( 51,144)( 52,143)( 53,138)( 54,137)( 55,142)( 56,141)
( 57,160)( 58,159)( 59,156)( 60,155)( 61,158)( 62,157)( 63,154)( 64,153)
( 65, 97)( 66, 98)( 67,101)( 68,102)( 69, 99)( 70,100)( 71,103)( 72,104)
( 73,118)( 74,117)( 75,114)( 76,113)( 77,120)( 78,119)( 79,116)( 80,115)
( 81,108)( 82,107)( 83,112)( 84,111)( 85,106)( 86,105)( 87,110)( 88,109)
( 89,128)( 90,127)( 91,124)( 92,123)( 93,126)( 94,125)( 95,122)( 96,121);;
s2 := ( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 21, 24)( 22, 23)( 29, 32)( 30, 31)( 33, 73)( 34, 74)( 35, 75)( 36, 76)
( 37, 80)( 38, 79)( 39, 78)( 40, 77)( 41, 65)( 42, 66)( 43, 67)( 44, 68)
( 45, 72)( 46, 71)( 47, 70)( 48, 69)( 49, 81)( 50, 82)( 51, 83)( 52, 84)
( 53, 88)( 54, 87)( 55, 86)( 56, 85)( 57, 89)( 58, 90)( 59, 91)( 60, 92)
( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 97,105)( 98,106)( 99,107)(100,108)
(101,112)(102,111)(103,110)(104,109)(117,120)(118,119)(125,128)(126,127)
(129,169)(130,170)(131,171)(132,172)(133,176)(134,175)(135,174)(136,173)
(137,161)(138,162)(139,163)(140,164)(141,168)(142,167)(143,166)(144,165)
(145,177)(146,178)(147,179)(148,180)(149,184)(150,183)(151,182)(152,181)
(153,185)(154,186)(155,187)(156,188)(157,192)(158,191)(159,190)(160,189);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 5, 7)( 6, 8)( 13, 15)( 14, 16)( 17, 25)( 18, 26)( 19, 27)
( 20, 28)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)( 35, 67)
( 36, 68)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)( 43, 75)
( 44, 76)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)( 51, 91)
( 52, 92)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)( 59, 83)
( 60, 84)( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)( 99,100)(101,104)
(102,103)(105,106)(107,108)(109,112)(110,111)(113,122)(114,121)(115,124)
(116,123)(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,164)
(132,163)(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,172)
(140,171)(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,188)
(148,187)(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,180)
(156,179)(157,184)(158,183)(159,182)(160,181);
s1 := Sym(192)!( 1,161)( 2,162)( 3,165)( 4,166)( 5,163)( 6,164)( 7,167)
( 8,168)( 9,182)( 10,181)( 11,178)( 12,177)( 13,184)( 14,183)( 15,180)
( 16,179)( 17,172)( 18,171)( 19,176)( 20,175)( 21,170)( 22,169)( 23,174)
( 24,173)( 25,192)( 26,191)( 27,188)( 28,187)( 29,190)( 30,189)( 31,186)
( 32,185)( 33,129)( 34,130)( 35,133)( 36,134)( 37,131)( 38,132)( 39,135)
( 40,136)( 41,150)( 42,149)( 43,146)( 44,145)( 45,152)( 46,151)( 47,148)
( 48,147)( 49,140)( 50,139)( 51,144)( 52,143)( 53,138)( 54,137)( 55,142)
( 56,141)( 57,160)( 58,159)( 59,156)( 60,155)( 61,158)( 62,157)( 63,154)
( 64,153)( 65, 97)( 66, 98)( 67,101)( 68,102)( 69, 99)( 70,100)( 71,103)
( 72,104)( 73,118)( 74,117)( 75,114)( 76,113)( 77,120)( 78,119)( 79,116)
( 80,115)( 81,108)( 82,107)( 83,112)( 84,111)( 85,106)( 86,105)( 87,110)
( 88,109)( 89,128)( 90,127)( 91,124)( 92,123)( 93,126)( 94,125)( 95,122)
( 96,121);
s2 := Sym(192)!( 1, 9)( 2, 10)( 3, 11)( 4, 12)( 5, 16)( 6, 15)( 7, 14)
( 8, 13)( 21, 24)( 22, 23)( 29, 32)( 30, 31)( 33, 73)( 34, 74)( 35, 75)
( 36, 76)( 37, 80)( 38, 79)( 39, 78)( 40, 77)( 41, 65)( 42, 66)( 43, 67)
( 44, 68)( 45, 72)( 46, 71)( 47, 70)( 48, 69)( 49, 81)( 50, 82)( 51, 83)
( 52, 84)( 53, 88)( 54, 87)( 55, 86)( 56, 85)( 57, 89)( 58, 90)( 59, 91)
( 60, 92)( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 97,105)( 98,106)( 99,107)
(100,108)(101,112)(102,111)(103,110)(104,109)(117,120)(118,119)(125,128)
(126,127)(129,169)(130,170)(131,171)(132,172)(133,176)(134,175)(135,174)
(136,173)(137,161)(138,162)(139,163)(140,164)(141,168)(142,167)(143,166)
(144,165)(145,177)(146,178)(147,179)(148,180)(149,184)(150,183)(151,182)
(152,181)(153,185)(154,186)(155,187)(156,188)(157,192)(158,191)(159,190)
(160,189);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1 >;
References : None.
to this polytope