include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,16}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,16}*768b
if this polytope has a name.
Group : SmallGroup(768,1088585)
Rank : 3
Schlafli Type : {6,16}
Number of vertices, edges, etc : 24, 192, 64
Order of s0s1s2 : 48
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,8}*384g
4-fold quotients : {6,16}*192, {6,4}*192b
8-fold quotients : {6,8}*96, {6,4}*96
12-fold quotients : {2,16}*64
16-fold quotients : {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
24-fold quotients : {2,8}*32
32-fold quotients : {3,4}*24, {6,2}*24
48-fold quotients : {2,4}*16
64-fold quotients : {3,2}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 39, 40)
( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 51, 52)( 53, 57)( 54, 58)( 55, 60)
( 56, 59)( 63, 64)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 75, 76)( 77, 81)
( 78, 82)( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)( 92, 95)
( 99,100)(101,105)(102,106)(103,108)(104,107)(111,112)(113,117)(114,118)
(115,120)(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)
(137,141)(138,142)(139,144)(140,143)(147,148)(149,153)(150,154)(151,156)
(152,155)(159,160)(161,165)(162,166)(163,168)(164,167)(171,172)(173,177)
(174,178)(175,180)(176,179)(183,184)(185,189)(186,190)(187,192)(188,191);;
s1 := ( 1, 9)( 2, 11)( 3, 10)( 4, 12)( 6, 7)( 13, 21)( 14, 23)( 15, 22)
( 16, 24)( 18, 19)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)( 30, 43)
( 31, 42)( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 49, 81)( 50, 83)
( 51, 82)( 52, 84)( 53, 77)( 54, 79)( 55, 78)( 56, 80)( 57, 73)( 58, 75)
( 59, 74)( 60, 76)( 61, 93)( 62, 95)( 63, 94)( 64, 96)( 65, 89)( 66, 91)
( 67, 90)( 68, 92)( 69, 85)( 70, 87)( 71, 86)( 72, 88)( 97,153)( 98,155)
( 99,154)(100,156)(101,149)(102,151)(103,150)(104,152)(105,145)(106,147)
(107,146)(108,148)(109,165)(110,167)(111,166)(112,168)(113,161)(114,163)
(115,162)(116,164)(117,157)(118,159)(119,158)(120,160)(121,189)(122,191)
(123,190)(124,192)(125,185)(126,187)(127,186)(128,188)(129,181)(130,183)
(131,182)(132,184)(133,177)(134,179)(135,178)(136,180)(137,173)(138,175)
(139,174)(140,176)(141,169)(142,171)(143,170)(144,172);;
s2 := ( 1, 98)( 2, 97)( 3,100)( 4, 99)( 5,102)( 6,101)( 7,104)( 8,103)
( 9,106)( 10,105)( 11,108)( 12,107)( 13,110)( 14,109)( 15,112)( 16,111)
( 17,114)( 18,113)( 19,116)( 20,115)( 21,118)( 22,117)( 23,120)( 24,119)
( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)( 32,139)
( 33,142)( 34,141)( 35,144)( 36,143)( 37,122)( 38,121)( 39,124)( 40,123)
( 41,126)( 42,125)( 43,128)( 44,127)( 45,130)( 46,129)( 47,132)( 48,131)
( 49,170)( 50,169)( 51,172)( 52,171)( 53,174)( 54,173)( 55,176)( 56,175)
( 57,178)( 58,177)( 59,180)( 60,179)( 61,182)( 62,181)( 63,184)( 64,183)
( 65,186)( 66,185)( 67,188)( 68,187)( 69,190)( 70,189)( 71,192)( 72,191)
( 73,146)( 74,145)( 75,148)( 76,147)( 77,150)( 78,149)( 79,152)( 80,151)
( 81,154)( 82,153)( 83,156)( 84,155)( 85,158)( 86,157)( 87,160)( 88,159)
( 89,162)( 90,161)( 91,164)( 92,163)( 93,166)( 94,165)( 95,168)( 96,167);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(192)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 51, 52)( 53, 57)( 54, 58)
( 55, 60)( 56, 59)( 63, 64)( 65, 69)( 66, 70)( 67, 72)( 68, 71)( 75, 76)
( 77, 81)( 78, 82)( 79, 84)( 80, 83)( 87, 88)( 89, 93)( 90, 94)( 91, 96)
( 92, 95)( 99,100)(101,105)(102,106)(103,108)(104,107)(111,112)(113,117)
(114,118)(115,120)(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)
(135,136)(137,141)(138,142)(139,144)(140,143)(147,148)(149,153)(150,154)
(151,156)(152,155)(159,160)(161,165)(162,166)(163,168)(164,167)(171,172)
(173,177)(174,178)(175,180)(176,179)(183,184)(185,189)(186,190)(187,192)
(188,191);
s1 := Sym(192)!( 1, 9)( 2, 11)( 3, 10)( 4, 12)( 6, 7)( 13, 21)( 14, 23)
( 15, 22)( 16, 24)( 18, 19)( 25, 45)( 26, 47)( 27, 46)( 28, 48)( 29, 41)
( 30, 43)( 31, 42)( 32, 44)( 33, 37)( 34, 39)( 35, 38)( 36, 40)( 49, 81)
( 50, 83)( 51, 82)( 52, 84)( 53, 77)( 54, 79)( 55, 78)( 56, 80)( 57, 73)
( 58, 75)( 59, 74)( 60, 76)( 61, 93)( 62, 95)( 63, 94)( 64, 96)( 65, 89)
( 66, 91)( 67, 90)( 68, 92)( 69, 85)( 70, 87)( 71, 86)( 72, 88)( 97,153)
( 98,155)( 99,154)(100,156)(101,149)(102,151)(103,150)(104,152)(105,145)
(106,147)(107,146)(108,148)(109,165)(110,167)(111,166)(112,168)(113,161)
(114,163)(115,162)(116,164)(117,157)(118,159)(119,158)(120,160)(121,189)
(122,191)(123,190)(124,192)(125,185)(126,187)(127,186)(128,188)(129,181)
(130,183)(131,182)(132,184)(133,177)(134,179)(135,178)(136,180)(137,173)
(138,175)(139,174)(140,176)(141,169)(142,171)(143,170)(144,172);
s2 := Sym(192)!( 1, 98)( 2, 97)( 3,100)( 4, 99)( 5,102)( 6,101)( 7,104)
( 8,103)( 9,106)( 10,105)( 11,108)( 12,107)( 13,110)( 14,109)( 15,112)
( 16,111)( 17,114)( 18,113)( 19,116)( 20,115)( 21,118)( 22,117)( 23,120)
( 24,119)( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)
( 32,139)( 33,142)( 34,141)( 35,144)( 36,143)( 37,122)( 38,121)( 39,124)
( 40,123)( 41,126)( 42,125)( 43,128)( 44,127)( 45,130)( 46,129)( 47,132)
( 48,131)( 49,170)( 50,169)( 51,172)( 52,171)( 53,174)( 54,173)( 55,176)
( 56,175)( 57,178)( 58,177)( 59,180)( 60,179)( 61,182)( 62,181)( 63,184)
( 64,183)( 65,186)( 66,185)( 67,188)( 68,187)( 69,190)( 70,189)( 71,192)
( 72,191)( 73,146)( 74,145)( 75,148)( 76,147)( 77,150)( 78,149)( 79,152)
( 80,151)( 81,154)( 82,153)( 83,156)( 84,155)( 85,158)( 86,157)( 87,160)
( 88,159)( 89,162)( 90,161)( 91,164)( 92,163)( 93,166)( 94,165)( 95,168)
( 96,167);
poly := sub<Sym(192)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope