include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,6}*768d
if this polytope has a name.
Group : SmallGroup(768,1089093)
Rank : 4
Schlafli Type : {2,8,6}
Number of vertices, edges, etc : 2, 32, 96, 24
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,8,6}*384a
4-fold quotients : {2,4,6}*192
8-fold quotients : {2,4,3}*96, {2,4,6}*96b, {2,4,6}*96c
16-fold quotients : {2,4,3}*48, {2,2,6}*48
32-fold quotients : {2,2,3}*24
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,11)( 4,12)( 5,13)( 6,14)( 7,18)( 8,17)( 9,16)(10,15)(19,27)(20,28)
(21,29)(22,30)(23,34)(24,33)(25,32)(26,31)(35,43)(36,44)(37,45)(38,46)(39,50)
(40,49)(41,48)(42,47)(51,59)(52,60)(53,61)(54,62)(55,66)(56,65)(57,64)(58,63)
(67,75)(68,76)(69,77)(70,78)(71,82)(72,81)(73,80)(74,79)(83,91)(84,92)(85,93)
(86,94)(87,98)(88,97)(89,96)(90,95);;
s2 := ( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,35)(20,36)(21,38)(22,37)
(23,44)(24,43)(25,45)(26,46)(27,40)(28,39)(29,41)(30,42)(31,47)(32,48)(33,50)
(34,49)(53,54)(55,60)(56,59)(57,61)(58,62)(65,66)(67,83)(68,84)(69,86)(70,85)
(71,92)(72,91)(73,93)(74,94)(75,88)(76,87)(77,89)(78,90)(79,95)(80,96)(81,98)
(82,97);;
s3 := ( 3,83)( 4,86)( 5,85)( 6,84)( 7,96)( 8,97)( 9,98)(10,95)(11,91)(12,94)
(13,93)(14,92)(15,90)(16,87)(17,88)(18,89)(19,67)(20,70)(21,69)(22,68)(23,80)
(24,81)(25,82)(26,79)(27,75)(28,78)(29,77)(30,76)(31,74)(32,71)(33,72)(34,73)
(35,51)(36,54)(37,53)(38,52)(39,64)(40,65)(41,66)(42,63)(43,59)(44,62)(45,61)
(46,60)(47,58)(48,55)(49,56)(50,57);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 3,11)( 4,12)( 5,13)( 6,14)( 7,18)( 8,17)( 9,16)(10,15)(19,27)
(20,28)(21,29)(22,30)(23,34)(24,33)(25,32)(26,31)(35,43)(36,44)(37,45)(38,46)
(39,50)(40,49)(41,48)(42,47)(51,59)(52,60)(53,61)(54,62)(55,66)(56,65)(57,64)
(58,63)(67,75)(68,76)(69,77)(70,78)(71,82)(72,81)(73,80)(74,79)(83,91)(84,92)
(85,93)(86,94)(87,98)(88,97)(89,96)(90,95);
s2 := Sym(98)!( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(17,18)(19,35)(20,36)(21,38)
(22,37)(23,44)(24,43)(25,45)(26,46)(27,40)(28,39)(29,41)(30,42)(31,47)(32,48)
(33,50)(34,49)(53,54)(55,60)(56,59)(57,61)(58,62)(65,66)(67,83)(68,84)(69,86)
(70,85)(71,92)(72,91)(73,93)(74,94)(75,88)(76,87)(77,89)(78,90)(79,95)(80,96)
(81,98)(82,97);
s3 := Sym(98)!( 3,83)( 4,86)( 5,85)( 6,84)( 7,96)( 8,97)( 9,98)(10,95)(11,91)
(12,94)(13,93)(14,92)(15,90)(16,87)(17,88)(18,89)(19,67)(20,70)(21,69)(22,68)
(23,80)(24,81)(25,82)(26,79)(27,75)(28,78)(29,77)(30,76)(31,74)(32,71)(33,72)
(34,73)(35,51)(36,54)(37,53)(38,52)(39,64)(40,65)(41,66)(42,63)(43,59)(44,62)
(45,61)(46,60)(47,58)(48,55)(49,56)(50,57);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope