Polytope of Type {2,6,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,24}*768b
if this polytope has a name.
Group : SmallGroup(768,1089358)
Rank : 4
Schlafli Type : {2,6,24}
Number of vertices, edges, etc : 2, 8, 96, 32
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,6,12}*384a
   4-fold quotients : {2,6,6}*192
   8-fold quotients : {2,3,6}*96, {2,6,3}*96
   16-fold quotients : {2,3,3}*48
   24-fold quotients : {2,2,4}*32
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 5, 8)( 6, 7)( 9,10)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)(17,26)
(18,25)(29,32)(30,31)(33,34)(35,43)(36,44)(37,48)(38,47)(39,46)(40,45)(41,50)
(42,49)(51,52)(53,55)(54,56)(59,68)(60,67)(61,71)(62,72)(63,69)(64,70)(65,73)
(66,74)(75,76)(77,79)(78,80)(83,92)(84,91)(85,95)(86,96)(87,93)(88,94)(89,97)
(90,98);;
s2 := ( 3,11)( 4,12)( 5,14)( 6,13)( 7,17)( 8,18)( 9,15)(10,16)(21,22)(23,25)
(24,26)(27,36)(28,35)(29,37)(30,38)(31,42)(32,41)(33,40)(34,39)(43,44)(47,50)
(48,49)(51,84)(52,83)(53,85)(54,86)(55,90)(56,89)(57,88)(58,87)(59,76)(60,75)
(61,77)(62,78)(63,82)(64,81)(65,80)(66,79)(67,92)(68,91)(69,93)(70,94)(71,98)
(72,97)(73,96)(74,95);;
s3 := ( 3,57)( 4,58)( 5,53)( 6,54)( 7,56)( 8,55)( 9,51)(10,52)(11,73)(12,74)
(13,69)(14,70)(15,72)(16,71)(17,67)(18,68)(19,65)(20,66)(21,61)(22,62)(23,64)
(24,63)(25,59)(26,60)(27,82)(28,81)(29,78)(30,77)(31,79)(32,80)(33,76)(34,75)
(35,98)(36,97)(37,94)(38,93)(39,95)(40,96)(41,92)(42,91)(43,90)(44,89)(45,86)
(46,85)(47,87)(48,88)(49,84)(50,83);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 5, 8)( 6, 7)( 9,10)(11,19)(12,20)(13,24)(14,23)(15,22)(16,21)
(17,26)(18,25)(29,32)(30,31)(33,34)(35,43)(36,44)(37,48)(38,47)(39,46)(40,45)
(41,50)(42,49)(51,52)(53,55)(54,56)(59,68)(60,67)(61,71)(62,72)(63,69)(64,70)
(65,73)(66,74)(75,76)(77,79)(78,80)(83,92)(84,91)(85,95)(86,96)(87,93)(88,94)
(89,97)(90,98);
s2 := Sym(98)!( 3,11)( 4,12)( 5,14)( 6,13)( 7,17)( 8,18)( 9,15)(10,16)(21,22)
(23,25)(24,26)(27,36)(28,35)(29,37)(30,38)(31,42)(32,41)(33,40)(34,39)(43,44)
(47,50)(48,49)(51,84)(52,83)(53,85)(54,86)(55,90)(56,89)(57,88)(58,87)(59,76)
(60,75)(61,77)(62,78)(63,82)(64,81)(65,80)(66,79)(67,92)(68,91)(69,93)(70,94)
(71,98)(72,97)(73,96)(74,95);
s3 := Sym(98)!( 3,57)( 4,58)( 5,53)( 6,54)( 7,56)( 8,55)( 9,51)(10,52)(11,73)
(12,74)(13,69)(14,70)(15,72)(16,71)(17,67)(18,68)(19,65)(20,66)(21,61)(22,62)
(23,64)(24,63)(25,59)(26,60)(27,82)(28,81)(29,78)(30,77)(31,79)(32,80)(33,76)
(34,75)(35,98)(36,97)(37,94)(38,93)(39,95)(40,96)(41,92)(42,91)(43,90)(44,89)
(45,86)(46,85)(47,87)(48,88)(49,84)(50,83);
poly := sub<Sym(98)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s3*s2*s1*s2*s3*s2*s1*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2 >; 
 

to this polytope