include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,24,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,24,4}*768b
if this polytope has a name.
Group : SmallGroup(768,323570)
Rank : 4
Schlafli Type : {2,24,4}
Number of vertices, edges, etc : 2, 48, 96, 8
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,12,4}*384a
3-fold quotients : {2,8,4}*256b
4-fold quotients : {2,12,4}*192a
6-fold quotients : {2,4,4}*128
8-fold quotients : {2,12,2}*96, {2,6,4}*96a
12-fold quotients : {2,4,4}*64
16-fold quotients : {2,6,2}*48
24-fold quotients : {2,2,4}*32, {2,4,2}*32
32-fold quotients : {2,3,2}*24
48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3,75)( 4,77)( 5,76)( 6,78)( 7,80)( 8,79)( 9,81)(10,83)(11,82)(12,84)
(13,86)(14,85)(15,96)(16,98)(17,97)(18,93)(19,95)(20,94)(21,90)(22,92)(23,91)
(24,87)(25,89)(26,88)(27,51)(28,53)(29,52)(30,54)(31,56)(32,55)(33,57)(34,59)
(35,58)(36,60)(37,62)(38,61)(39,72)(40,74)(41,73)(42,69)(43,71)(44,70)(45,66)
(46,68)(47,67)(48,63)(49,65)(50,64);;
s2 := ( 3, 4)( 6, 7)( 9,13)(10,12)(11,14)(15,16)(18,19)(21,25)(22,24)(23,26)
(27,40)(28,39)(29,41)(30,43)(31,42)(32,44)(33,49)(34,48)(35,50)(36,46)(37,45)
(38,47)(51,52)(54,55)(57,61)(58,60)(59,62)(63,64)(66,67)(69,73)(70,72)(71,74)
(75,88)(76,87)(77,89)(78,91)(79,90)(80,92)(81,97)(82,96)(83,98)(84,94)(85,93)
(86,95);;
s3 := ( 3,27)( 4,28)( 5,29)( 6,30)( 7,31)( 8,32)( 9,33)(10,34)(11,35)(12,36)
(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)
(24,48)(25,49)(26,50)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)(58,82)
(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)(69,93)
(70,94)(71,95)(72,96)(73,97)(74,98);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(98)!(1,2);
s1 := Sym(98)!( 3,75)( 4,77)( 5,76)( 6,78)( 7,80)( 8,79)( 9,81)(10,83)(11,82)
(12,84)(13,86)(14,85)(15,96)(16,98)(17,97)(18,93)(19,95)(20,94)(21,90)(22,92)
(23,91)(24,87)(25,89)(26,88)(27,51)(28,53)(29,52)(30,54)(31,56)(32,55)(33,57)
(34,59)(35,58)(36,60)(37,62)(38,61)(39,72)(40,74)(41,73)(42,69)(43,71)(44,70)
(45,66)(46,68)(47,67)(48,63)(49,65)(50,64);
s2 := Sym(98)!( 3, 4)( 6, 7)( 9,13)(10,12)(11,14)(15,16)(18,19)(21,25)(22,24)
(23,26)(27,40)(28,39)(29,41)(30,43)(31,42)(32,44)(33,49)(34,48)(35,50)(36,46)
(37,45)(38,47)(51,52)(54,55)(57,61)(58,60)(59,62)(63,64)(66,67)(69,73)(70,72)
(71,74)(75,88)(76,87)(77,89)(78,91)(79,90)(80,92)(81,97)(82,96)(83,98)(84,94)
(85,93)(86,95);
s3 := Sym(98)!( 3,27)( 4,28)( 5,29)( 6,30)( 7,31)( 8,32)( 9,33)(10,34)(11,35)
(12,36)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)
(23,47)(24,48)(25,49)(26,50)(51,75)(52,76)(53,77)(54,78)(55,79)(56,80)(57,81)
(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(65,89)(66,90)(67,91)(68,92)
(69,93)(70,94)(71,95)(72,96)(73,97)(74,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2*s1*s2*s3*s2,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s2*s1*s2 >;
to this polytope