include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,2,4,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,2,4,12}*768a
if this polytope has a name.
Group : SmallGroup(768,364865)
Rank : 5
Schlafli Type : {4,2,4,12}
Number of vertices, edges, etc : 4, 4, 4, 24, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,4,12}*384a, {4,2,2,12}*384, {4,2,4,6}*384a
3-fold quotients : {4,2,4,4}*256
4-fold quotients : {2,2,2,12}*192, {2,2,4,6}*192a, {4,2,2,6}*192
6-fold quotients : {2,2,4,4}*128, {4,2,2,4}*128, {4,2,4,2}*128
8-fold quotients : {4,2,2,3}*96, {2,2,2,6}*96
12-fold quotients : {2,2,2,4}*64, {2,2,4,2}*64, {4,2,2,2}*64
16-fold quotients : {2,2,2,3}*48
24-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2)(3,4);;
s2 := ( 6,10)( 7,14)(12,19)(13,20)(15,23)(16,24);;
s3 := ( 5, 6)( 7,11)( 8,13)( 9,12)(10,18)(14,17)(15,22)(16,21)(19,28)(20,27)
(23,26)(24,25);;
s4 := ( 5, 8)( 6,15)( 7,12)(10,23)(11,21)(13,16)(14,19)(17,25)(18,27)(20,24);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(28)!(2,3);
s1 := Sym(28)!(1,2)(3,4);
s2 := Sym(28)!( 6,10)( 7,14)(12,19)(13,20)(15,23)(16,24);
s3 := Sym(28)!( 5, 6)( 7,11)( 8,13)( 9,12)(10,18)(14,17)(15,22)(16,21)(19,28)
(20,27)(23,26)(24,25);
s4 := Sym(28)!( 5, 8)( 6,15)( 7,12)(10,23)(11,21)(13,16)(14,19)(17,25)(18,27)
(20,24);
poly := sub<Sym(28)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope