Polytope of Type {24,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {24,8}*768a
if this polytope has a name.
Group : SmallGroup(768,58267)
Rank : 3
Schlafli Type : {24,8}
Number of vertices, edges, etc : 48, 192, 16
Order of s0s1s2 : 24
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {24,4}*384a, {24,8}*384a, {24,8}*384b, {12,8}*384a, {24,8}*384c, {24,8}*384d
   3-fold quotients : {8,8}*256a
   4-fold quotients : {24,4}*192a, {12,4}*192a, {24,4}*192b, {12,8}*192a, {12,8}*192b
   6-fold quotients : {4,8}*128a, {8,4}*128a, {8,8}*128a, {8,8}*128b, {8,8}*128c, {8,8}*128d
   8-fold quotients : {12,4}*96a, {24,2}*96, {6,8}*96
   12-fold quotients : {4,8}*64a, {8,4}*64a, {4,8}*64b, {8,4}*64b, {4,4}*64
   16-fold quotients : {12,2}*48, {6,4}*48a
   24-fold quotients : {4,4}*32, {2,8}*32, {8,2}*32
   32-fold quotients : {6,2}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,103)(  8,105)
(  9,104)( 10,106)( 11,108)( 12,107)( 13,109)( 14,111)( 15,110)( 16,112)
( 17,114)( 18,113)( 19,115)( 20,117)( 21,116)( 22,118)( 23,120)( 24,119)
( 25,124)( 26,126)( 27,125)( 28,121)( 29,123)( 30,122)( 31,130)( 32,132)
( 33,131)( 34,127)( 35,129)( 36,128)( 37,136)( 38,138)( 39,137)( 40,133)
( 41,135)( 42,134)( 43,142)( 44,144)( 45,143)( 46,139)( 47,141)( 48,140)
( 49,151)( 50,153)( 51,152)( 52,154)( 53,156)( 54,155)( 55,145)( 56,147)
( 57,146)( 58,148)( 59,150)( 60,149)( 61,163)( 62,165)( 63,164)( 64,166)
( 65,168)( 66,167)( 67,157)( 68,159)( 69,158)( 70,160)( 71,162)( 72,161)
( 73,178)( 74,180)( 75,179)( 76,175)( 77,177)( 78,176)( 79,172)( 80,174)
( 81,173)( 82,169)( 83,171)( 84,170)( 85,190)( 86,192)( 87,191)( 88,187)
( 89,189)( 90,188)( 91,184)( 92,186)( 93,185)( 94,181)( 95,183)( 96,182)
(193,289)(194,291)(195,290)(196,292)(197,294)(198,293)(199,295)(200,297)
(201,296)(202,298)(203,300)(204,299)(205,301)(206,303)(207,302)(208,304)
(209,306)(210,305)(211,307)(212,309)(213,308)(214,310)(215,312)(216,311)
(217,316)(218,318)(219,317)(220,313)(221,315)(222,314)(223,322)(224,324)
(225,323)(226,319)(227,321)(228,320)(229,328)(230,330)(231,329)(232,325)
(233,327)(234,326)(235,334)(236,336)(237,335)(238,331)(239,333)(240,332)
(241,343)(242,345)(243,344)(244,346)(245,348)(246,347)(247,337)(248,339)
(249,338)(250,340)(251,342)(252,341)(253,355)(254,357)(255,356)(256,358)
(257,360)(258,359)(259,349)(260,351)(261,350)(262,352)(263,354)(264,353)
(265,370)(266,372)(267,371)(268,367)(269,369)(270,368)(271,364)(272,366)
(273,365)(274,361)(275,363)(276,362)(277,382)(278,384)(279,383)(280,379)
(281,381)(282,380)(283,376)(284,378)(285,377)(286,373)(287,375)(288,374);;
s1 := (  1,  3)(  4,  6)(  7,  9)( 10, 12)( 13, 15)( 16, 18)( 19, 21)( 22, 24)
( 25, 30)( 26, 29)( 27, 28)( 31, 36)( 32, 35)( 33, 34)( 37, 42)( 38, 41)
( 39, 40)( 43, 48)( 44, 47)( 45, 46)( 49, 63)( 50, 62)( 51, 61)( 52, 66)
( 53, 65)( 54, 64)( 55, 69)( 56, 68)( 57, 67)( 58, 72)( 59, 71)( 60, 70)
( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 78, 85)( 79, 96)( 80, 95)
( 81, 94)( 82, 93)( 83, 92)( 84, 91)( 97,123)( 98,122)( 99,121)(100,126)
(101,125)(102,124)(103,129)(104,128)(105,127)(106,132)(107,131)(108,130)
(109,135)(110,134)(111,133)(112,138)(113,137)(114,136)(115,141)(116,140)
(117,139)(118,144)(119,143)(120,142)(145,183)(146,182)(147,181)(148,186)
(149,185)(150,184)(151,189)(152,188)(153,187)(154,192)(155,191)(156,190)
(157,171)(158,170)(159,169)(160,174)(161,173)(162,172)(163,177)(164,176)
(165,175)(166,180)(167,179)(168,178)(193,243)(194,242)(195,241)(196,246)
(197,245)(198,244)(199,249)(200,248)(201,247)(202,252)(203,251)(204,250)
(205,255)(206,254)(207,253)(208,258)(209,257)(210,256)(211,261)(212,260)
(213,259)(214,264)(215,263)(216,262)(217,270)(218,269)(219,268)(220,267)
(221,266)(222,265)(223,276)(224,275)(225,274)(226,273)(227,272)(228,271)
(229,282)(230,281)(231,280)(232,279)(233,278)(234,277)(235,288)(236,287)
(237,286)(238,285)(239,284)(240,283)(289,369)(290,368)(291,367)(292,372)
(293,371)(294,370)(295,363)(296,362)(297,361)(298,366)(299,365)(300,364)
(301,381)(302,380)(303,379)(304,384)(305,383)(306,382)(307,375)(308,374)
(309,373)(310,378)(311,377)(312,376)(313,345)(314,344)(315,343)(316,348)
(317,347)(318,346)(319,339)(320,338)(321,337)(322,342)(323,341)(324,340)
(325,357)(326,356)(327,355)(328,360)(329,359)(330,358)(331,351)(332,350)
(333,349)(334,354)(335,353)(336,352);;
s2 := (  1,193)(  2,194)(  3,195)(  4,196)(  5,197)(  6,198)(  7,199)(  8,200)
(  9,201)( 10,202)( 11,203)( 12,204)( 13,205)( 14,206)( 15,207)( 16,208)
( 17,209)( 18,210)( 19,211)( 20,212)( 21,213)( 22,214)( 23,215)( 24,216)
( 25,223)( 26,224)( 27,225)( 28,226)( 29,227)( 30,228)( 31,217)( 32,218)
( 33,219)( 34,220)( 35,221)( 36,222)( 37,235)( 38,236)( 39,237)( 40,238)
( 41,239)( 42,240)( 43,229)( 44,230)( 45,231)( 46,232)( 47,233)( 48,234)
( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)( 56,260)
( 57,261)( 58,262)( 59,263)( 60,264)( 61,241)( 62,242)( 63,243)( 64,244)
( 65,245)( 66,246)( 67,247)( 68,248)( 69,249)( 70,250)( 71,251)( 72,252)
( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,277)( 80,278)
( 81,279)( 82,280)( 83,281)( 84,282)( 85,271)( 86,272)( 87,273)( 88,274)
( 89,275)( 90,276)( 91,265)( 92,266)( 93,267)( 94,268)( 95,269)( 96,270)
( 97,289)( 98,290)( 99,291)(100,292)(101,293)(102,294)(103,295)(104,296)
(105,297)(106,298)(107,299)(108,300)(109,301)(110,302)(111,303)(112,304)
(113,305)(114,306)(115,307)(116,308)(117,309)(118,310)(119,311)(120,312)
(121,319)(122,320)(123,321)(124,322)(125,323)(126,324)(127,313)(128,314)
(129,315)(130,316)(131,317)(132,318)(133,331)(134,332)(135,333)(136,334)
(137,335)(138,336)(139,325)(140,326)(141,327)(142,328)(143,329)(144,330)
(145,349)(146,350)(147,351)(148,352)(149,353)(150,354)(151,355)(152,356)
(153,357)(154,358)(155,359)(156,360)(157,337)(158,338)(159,339)(160,340)
(161,341)(162,342)(163,343)(164,344)(165,345)(166,346)(167,347)(168,348)
(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,373)(176,374)
(177,375)(178,376)(179,377)(180,378)(181,367)(182,368)(183,369)(184,370)
(185,371)(186,372)(187,361)(188,362)(189,363)(190,364)(191,365)(192,366);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 97)(  2, 99)(  3, 98)(  4,100)(  5,102)(  6,101)(  7,103)
(  8,105)(  9,104)( 10,106)( 11,108)( 12,107)( 13,109)( 14,111)( 15,110)
( 16,112)( 17,114)( 18,113)( 19,115)( 20,117)( 21,116)( 22,118)( 23,120)
( 24,119)( 25,124)( 26,126)( 27,125)( 28,121)( 29,123)( 30,122)( 31,130)
( 32,132)( 33,131)( 34,127)( 35,129)( 36,128)( 37,136)( 38,138)( 39,137)
( 40,133)( 41,135)( 42,134)( 43,142)( 44,144)( 45,143)( 46,139)( 47,141)
( 48,140)( 49,151)( 50,153)( 51,152)( 52,154)( 53,156)( 54,155)( 55,145)
( 56,147)( 57,146)( 58,148)( 59,150)( 60,149)( 61,163)( 62,165)( 63,164)
( 64,166)( 65,168)( 66,167)( 67,157)( 68,159)( 69,158)( 70,160)( 71,162)
( 72,161)( 73,178)( 74,180)( 75,179)( 76,175)( 77,177)( 78,176)( 79,172)
( 80,174)( 81,173)( 82,169)( 83,171)( 84,170)( 85,190)( 86,192)( 87,191)
( 88,187)( 89,189)( 90,188)( 91,184)( 92,186)( 93,185)( 94,181)( 95,183)
( 96,182)(193,289)(194,291)(195,290)(196,292)(197,294)(198,293)(199,295)
(200,297)(201,296)(202,298)(203,300)(204,299)(205,301)(206,303)(207,302)
(208,304)(209,306)(210,305)(211,307)(212,309)(213,308)(214,310)(215,312)
(216,311)(217,316)(218,318)(219,317)(220,313)(221,315)(222,314)(223,322)
(224,324)(225,323)(226,319)(227,321)(228,320)(229,328)(230,330)(231,329)
(232,325)(233,327)(234,326)(235,334)(236,336)(237,335)(238,331)(239,333)
(240,332)(241,343)(242,345)(243,344)(244,346)(245,348)(246,347)(247,337)
(248,339)(249,338)(250,340)(251,342)(252,341)(253,355)(254,357)(255,356)
(256,358)(257,360)(258,359)(259,349)(260,351)(261,350)(262,352)(263,354)
(264,353)(265,370)(266,372)(267,371)(268,367)(269,369)(270,368)(271,364)
(272,366)(273,365)(274,361)(275,363)(276,362)(277,382)(278,384)(279,383)
(280,379)(281,381)(282,380)(283,376)(284,378)(285,377)(286,373)(287,375)
(288,374);
s1 := Sym(384)!(  1,  3)(  4,  6)(  7,  9)( 10, 12)( 13, 15)( 16, 18)( 19, 21)
( 22, 24)( 25, 30)( 26, 29)( 27, 28)( 31, 36)( 32, 35)( 33, 34)( 37, 42)
( 38, 41)( 39, 40)( 43, 48)( 44, 47)( 45, 46)( 49, 63)( 50, 62)( 51, 61)
( 52, 66)( 53, 65)( 54, 64)( 55, 69)( 56, 68)( 57, 67)( 58, 72)( 59, 71)
( 60, 70)( 73, 90)( 74, 89)( 75, 88)( 76, 87)( 77, 86)( 78, 85)( 79, 96)
( 80, 95)( 81, 94)( 82, 93)( 83, 92)( 84, 91)( 97,123)( 98,122)( 99,121)
(100,126)(101,125)(102,124)(103,129)(104,128)(105,127)(106,132)(107,131)
(108,130)(109,135)(110,134)(111,133)(112,138)(113,137)(114,136)(115,141)
(116,140)(117,139)(118,144)(119,143)(120,142)(145,183)(146,182)(147,181)
(148,186)(149,185)(150,184)(151,189)(152,188)(153,187)(154,192)(155,191)
(156,190)(157,171)(158,170)(159,169)(160,174)(161,173)(162,172)(163,177)
(164,176)(165,175)(166,180)(167,179)(168,178)(193,243)(194,242)(195,241)
(196,246)(197,245)(198,244)(199,249)(200,248)(201,247)(202,252)(203,251)
(204,250)(205,255)(206,254)(207,253)(208,258)(209,257)(210,256)(211,261)
(212,260)(213,259)(214,264)(215,263)(216,262)(217,270)(218,269)(219,268)
(220,267)(221,266)(222,265)(223,276)(224,275)(225,274)(226,273)(227,272)
(228,271)(229,282)(230,281)(231,280)(232,279)(233,278)(234,277)(235,288)
(236,287)(237,286)(238,285)(239,284)(240,283)(289,369)(290,368)(291,367)
(292,372)(293,371)(294,370)(295,363)(296,362)(297,361)(298,366)(299,365)
(300,364)(301,381)(302,380)(303,379)(304,384)(305,383)(306,382)(307,375)
(308,374)(309,373)(310,378)(311,377)(312,376)(313,345)(314,344)(315,343)
(316,348)(317,347)(318,346)(319,339)(320,338)(321,337)(322,342)(323,341)
(324,340)(325,357)(326,356)(327,355)(328,360)(329,359)(330,358)(331,351)
(332,350)(333,349)(334,354)(335,353)(336,352);
s2 := Sym(384)!(  1,193)(  2,194)(  3,195)(  4,196)(  5,197)(  6,198)(  7,199)
(  8,200)(  9,201)( 10,202)( 11,203)( 12,204)( 13,205)( 14,206)( 15,207)
( 16,208)( 17,209)( 18,210)( 19,211)( 20,212)( 21,213)( 22,214)( 23,215)
( 24,216)( 25,223)( 26,224)( 27,225)( 28,226)( 29,227)( 30,228)( 31,217)
( 32,218)( 33,219)( 34,220)( 35,221)( 36,222)( 37,235)( 38,236)( 39,237)
( 40,238)( 41,239)( 42,240)( 43,229)( 44,230)( 45,231)( 46,232)( 47,233)
( 48,234)( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)
( 56,260)( 57,261)( 58,262)( 59,263)( 60,264)( 61,241)( 62,242)( 63,243)
( 64,244)( 65,245)( 66,246)( 67,247)( 68,248)( 69,249)( 70,250)( 71,251)
( 72,252)( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,277)
( 80,278)( 81,279)( 82,280)( 83,281)( 84,282)( 85,271)( 86,272)( 87,273)
( 88,274)( 89,275)( 90,276)( 91,265)( 92,266)( 93,267)( 94,268)( 95,269)
( 96,270)( 97,289)( 98,290)( 99,291)(100,292)(101,293)(102,294)(103,295)
(104,296)(105,297)(106,298)(107,299)(108,300)(109,301)(110,302)(111,303)
(112,304)(113,305)(114,306)(115,307)(116,308)(117,309)(118,310)(119,311)
(120,312)(121,319)(122,320)(123,321)(124,322)(125,323)(126,324)(127,313)
(128,314)(129,315)(130,316)(131,317)(132,318)(133,331)(134,332)(135,333)
(136,334)(137,335)(138,336)(139,325)(140,326)(141,327)(142,328)(143,329)
(144,330)(145,349)(146,350)(147,351)(148,352)(149,353)(150,354)(151,355)
(152,356)(153,357)(154,358)(155,359)(156,360)(157,337)(158,338)(159,339)
(160,340)(161,341)(162,342)(163,343)(164,344)(165,345)(166,346)(167,347)
(168,348)(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,373)
(176,374)(177,375)(178,376)(179,377)(180,378)(181,367)(182,368)(183,369)
(184,370)(185,371)(186,372)(187,361)(188,362)(189,363)(190,364)(191,365)
(192,366);
poly := sub<Sym(384)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope