Polytope of Type {4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24}*768b
if this polytope has a name.
Group : SmallGroup(768,90280)
Rank : 3
Schlafli Type : {4,24}
Number of vertices, edges, etc : 16, 192, 96
Order of s0s1s2 : 12
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,24}*384b
   3-fold quotients : {4,8}*256b
   4-fold quotients : {4,12}*192a
   6-fold quotients : {4,8}*128b
   8-fold quotients : {4,12}*96a
   12-fold quotients : {4,4}*64
   16-fold quotients : {2,12}*48, {4,6}*48a
   24-fold quotients : {4,4}*32
   32-fold quotients : {2,6}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 7,10)( 8,11)( 9,12)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)(28,43)
(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42)(55,58)(56,59)(57,60)
(67,70)(68,71)(69,72)(73,94)(74,95)(75,96)(76,91)(77,92)(78,93)(79,85)(80,86)
(81,87)(82,88)(83,89)(84,90);;
s1 := ( 2, 3)( 5, 6)( 8, 9)(11,12)(13,19)(14,21)(15,20)(16,22)(17,24)(18,23)
(26,27)(29,30)(32,33)(35,36)(37,43)(38,45)(39,44)(40,46)(41,48)(42,47)(49,73)
(50,75)(51,74)(52,76)(53,78)(54,77)(55,79)(56,81)(57,80)(58,82)(59,84)(60,83)
(61,91)(62,93)(63,92)(64,94)(65,96)(66,95)(67,85)(68,87)(69,86)(70,88)(71,90)
(72,89);;
s2 := ( 1,51)( 2,50)( 3,49)( 4,54)( 5,53)( 6,52)( 7,57)( 8,56)( 9,55)(10,60)
(11,59)(12,58)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,72)(20,71)(21,70)
(22,69)(23,68)(24,67)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)
(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)
(44,77)(45,76)(46,75)(47,74)(48,73);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!( 7,10)( 8,11)( 9,12)(19,22)(20,23)(21,24)(25,46)(26,47)(27,48)
(28,43)(29,44)(30,45)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42)(55,58)(56,59)
(57,60)(67,70)(68,71)(69,72)(73,94)(74,95)(75,96)(76,91)(77,92)(78,93)(79,85)
(80,86)(81,87)(82,88)(83,89)(84,90);
s1 := Sym(96)!( 2, 3)( 5, 6)( 8, 9)(11,12)(13,19)(14,21)(15,20)(16,22)(17,24)
(18,23)(26,27)(29,30)(32,33)(35,36)(37,43)(38,45)(39,44)(40,46)(41,48)(42,47)
(49,73)(50,75)(51,74)(52,76)(53,78)(54,77)(55,79)(56,81)(57,80)(58,82)(59,84)
(60,83)(61,91)(62,93)(63,92)(64,94)(65,96)(66,95)(67,85)(68,87)(69,86)(70,88)
(71,90)(72,89);
s2 := Sym(96)!( 1,51)( 2,50)( 3,49)( 4,54)( 5,53)( 6,52)( 7,57)( 8,56)( 9,55)
(10,60)(11,59)(12,58)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,72)(20,71)
(21,70)(22,69)(23,68)(24,67)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)
(32,89)(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)
(43,78)(44,77)(45,76)(46,75)(47,74)(48,73);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1 >; 
 
References : None.
to this polytope