Polytope of Type {2,7,2,14}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,7,2,14}*784
if this polytope has a name.
Group : SmallGroup(784,169)
Rank : 5
Schlafli Type : {2,7,2,14}
Number of vertices, edges, etc : 2, 7, 7, 14, 14
Order of s0s1s2s3s4 : 14
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,7,2,14,2} of size 1568
Vertex Figure Of :
   {2,2,7,2,14} of size 1568
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,7,2,7}*392
   7-fold quotients : {2,7,2,2}*112
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,7,2,28}*1568, {2,14,2,14}*1568
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7)(8,9);;
s2 := (3,4)(5,6)(7,8);;
s3 := (12,13)(14,15)(16,17)(18,19)(20,21)(22,23);;
s4 := (10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,23);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(23)!(1,2);
s1 := Sym(23)!(4,5)(6,7)(8,9);
s2 := Sym(23)!(3,4)(5,6)(7,8);
s3 := Sym(23)!(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);
s4 := Sym(23)!(10,14)(11,12)(13,18)(15,16)(17,22)(19,20)(21,23);
poly := sub<Sym(23)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope