include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,2,14}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,2,14}*392
if this polytope has a name.
Group : SmallGroup(392,41)
Rank : 4
Schlafli Type : {7,2,14}
Number of vertices, edges, etc : 7, 7, 14, 14
Order of s0s1s2s3 : 14
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{7,2,14,2} of size 784
{7,2,14,4} of size 1568
Vertex Figure Of :
{2,7,2,14} of size 784
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,2,7}*196
7-fold quotients : {7,2,2}*56
Covers (Minimal Covers in Boldface) :
2-fold covers : {7,2,28}*784, {14,2,14}*784
3-fold covers : {7,2,42}*1176, {21,2,14}*1176
4-fold covers : {7,2,56}*1568, {14,2,28}*1568, {28,2,14}*1568, {14,4,14}*1568
5-fold covers : {7,2,70}*1960, {35,2,14}*1960
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7);;
s1 := (1,2)(3,4)(5,6);;
s2 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
s3 := ( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,21);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(21)!(2,3)(4,5)(6,7);
s1 := Sym(21)!(1,2)(3,4)(5,6);
s2 := Sym(21)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);
s3 := Sym(21)!( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,21);
poly := sub<Sym(21)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope