include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,10,5}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,10,5}*800
if this polytope has a name.
Group : SmallGroup(800,1208)
Rank : 6
Schlafli Type : {2,2,2,10,5}
Number of vertices, edges, etc : 2, 2, 2, 10, 25, 5
Order of s0s1s2s3s4s5 : 10
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,2,10,5,2} of size 1600
Vertex Figure Of :
{2,2,2,2,10,5} of size 1600
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {2,2,2,2,5}*160
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,2,10,5}*1600, {4,2,2,10,5}*1600, {2,2,4,10,5}*1600, {2,2,2,10,10}*1600b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (10,11)(13,14)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);;
s4 := ( 7,10)( 8,16)( 9,13)(11,18)(12,24)(14,26)(15,20)(17,22)(21,30)(23,27)
(25,28)(29,31);;
s5 := ( 7, 8)( 9,12)(10,14)(11,13)(16,21)(17,20)(18,23)(19,22)(24,25)(26,29)
(27,28)(30,31);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!(1,2);
s1 := Sym(31)!(3,4);
s2 := Sym(31)!(5,6);
s3 := Sym(31)!(10,11)(13,14)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31);
s4 := Sym(31)!( 7,10)( 8,16)( 9,13)(11,18)(12,24)(14,26)(15,20)(17,22)(21,30)
(23,27)(25,28)(29,31);
s5 := Sym(31)!( 7, 8)( 9,12)(10,14)(11,13)(16,21)(17,20)(18,23)(19,22)(24,25)
(26,29)(27,28)(30,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope