Polytope of Type {6,34,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,34,2}*816
if this polytope has a name.
Group : SmallGroup(816,199)
Rank : 4
Schlafli Type : {6,34,2}
Number of vertices, edges, etc : 6, 102, 34, 2
Order of s0s1s2s3 : 102
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,34,2,2} of size 1632
Vertex Figure Of :
   {2,6,34,2} of size 1632
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,34,2}*272
   6-fold quotients : {2,17,2}*136
   17-fold quotients : {6,2,2}*48
   34-fold quotients : {3,2,2}*24
   51-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,34,2}*1632, {6,68,2}*1632a, {6,34,4}*1632
Permutation Representation (GAP) :
s0 := ( 18, 35)( 19, 36)( 20, 37)( 21, 38)( 22, 39)( 23, 40)( 24, 41)( 25, 42)
( 26, 43)( 27, 44)( 28, 45)( 29, 46)( 30, 47)( 31, 48)( 32, 49)( 33, 50)
( 34, 51)( 69, 86)( 70, 87)( 71, 88)( 72, 89)( 73, 90)( 74, 91)( 75, 92)
( 76, 93)( 77, 94)( 78, 95)( 79, 96)( 80, 97)( 81, 98)( 82, 99)( 83,100)
( 84,101)( 85,102);;
s1 := (  1, 18)(  2, 34)(  3, 33)(  4, 32)(  5, 31)(  6, 30)(  7, 29)(  8, 28)
(  9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 23)( 14, 22)( 15, 21)( 16, 20)
( 17, 19)( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)( 42, 45)
( 43, 44)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)( 57, 81)( 58, 80)
( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)( 65, 73)( 66, 72)
( 67, 71)( 68, 70)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)( 92, 97)
( 93, 96)( 94, 95);;
s2 := (  1, 53)(  2, 52)(  3, 68)(  4, 67)(  5, 66)(  6, 65)(  7, 64)(  8, 63)
(  9, 62)( 10, 61)( 11, 60)( 12, 59)( 13, 58)( 14, 57)( 15, 56)( 16, 55)
( 17, 54)( 18, 70)( 19, 69)( 20, 85)( 21, 84)( 22, 83)( 23, 82)( 24, 81)
( 25, 80)( 26, 79)( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 74)( 32, 73)
( 33, 72)( 34, 71)( 35, 87)( 36, 86)( 37,102)( 38,101)( 39,100)( 40, 99)
( 41, 98)( 42, 97)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)( 48, 91)
( 49, 90)( 50, 89)( 51, 88);;
s3 := (103,104);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(104)!( 18, 35)( 19, 36)( 20, 37)( 21, 38)( 22, 39)( 23, 40)( 24, 41)
( 25, 42)( 26, 43)( 27, 44)( 28, 45)( 29, 46)( 30, 47)( 31, 48)( 32, 49)
( 33, 50)( 34, 51)( 69, 86)( 70, 87)( 71, 88)( 72, 89)( 73, 90)( 74, 91)
( 75, 92)( 76, 93)( 77, 94)( 78, 95)( 79, 96)( 80, 97)( 81, 98)( 82, 99)
( 83,100)( 84,101)( 85,102);
s1 := Sym(104)!(  1, 18)(  2, 34)(  3, 33)(  4, 32)(  5, 31)(  6, 30)(  7, 29)
(  8, 28)(  9, 27)( 10, 26)( 11, 25)( 12, 24)( 13, 23)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 36, 51)( 37, 50)( 38, 49)( 39, 48)( 40, 47)( 41, 46)
( 42, 45)( 43, 44)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)( 57, 81)
( 58, 80)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)( 65, 73)
( 66, 72)( 67, 71)( 68, 70)( 87,102)( 88,101)( 89,100)( 90, 99)( 91, 98)
( 92, 97)( 93, 96)( 94, 95);
s2 := Sym(104)!(  1, 53)(  2, 52)(  3, 68)(  4, 67)(  5, 66)(  6, 65)(  7, 64)
(  8, 63)(  9, 62)( 10, 61)( 11, 60)( 12, 59)( 13, 58)( 14, 57)( 15, 56)
( 16, 55)( 17, 54)( 18, 70)( 19, 69)( 20, 85)( 21, 84)( 22, 83)( 23, 82)
( 24, 81)( 25, 80)( 26, 79)( 27, 78)( 28, 77)( 29, 76)( 30, 75)( 31, 74)
( 32, 73)( 33, 72)( 34, 71)( 35, 87)( 36, 86)( 37,102)( 38,101)( 39,100)
( 40, 99)( 41, 98)( 42, 97)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)
( 48, 91)( 49, 90)( 50, 89)( 51, 88);
s3 := Sym(104)!(103,104);
poly := sub<Sym(104)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope