Polytope of Type {6,70}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,70}*840
Also Known As : {6,70|2}. if this polytope has another name.
Group : SmallGroup(840,174)
Rank : 3
Schlafli Type : {6,70}
Number of vertices, edges, etc : 6, 210, 70
Order of s0s1s2 : 210
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,70,2} of size 1680
Vertex Figure Of :
   {2,6,70} of size 1680
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,70}*280
   5-fold quotients : {6,14}*168
   6-fold quotients : {2,35}*140
   7-fold quotients : {6,10}*120
   15-fold quotients : {2,14}*56
   21-fold quotients : {2,10}*40
   30-fold quotients : {2,7}*28
   35-fold quotients : {6,2}*24
   42-fold quotients : {2,5}*20
   70-fold quotients : {3,2}*12
   105-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,70}*1680, {6,140}*1680a
Permutation Representation (GAP) :
s0 := ( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)( 41, 76)( 42, 77)( 43, 78)
( 44, 79)( 45, 80)( 46, 81)( 47, 82)( 48, 83)( 49, 84)( 50, 85)( 51, 86)
( 52, 87)( 53, 88)( 54, 89)( 55, 90)( 56, 91)( 57, 92)( 58, 93)( 59, 94)
( 60, 95)( 61, 96)( 62, 97)( 63, 98)( 64, 99)( 65,100)( 66,101)( 67,102)
( 68,103)( 69,104)( 70,105)(141,176)(142,177)(143,178)(144,179)(145,180)
(146,181)(147,182)(148,183)(149,184)(150,185)(151,186)(152,187)(153,188)
(154,189)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)(161,196)
(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203)(169,204)
(170,205)(171,206)(172,207)(173,208)(174,209)(175,210);;
s1 := (  1, 36)(  2, 42)(  3, 41)(  4, 40)(  5, 39)(  6, 38)(  7, 37)(  8, 64)
(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 57)( 16, 63)
( 17, 62)( 18, 61)( 19, 60)( 20, 59)( 21, 58)( 22, 50)( 23, 56)( 24, 55)
( 25, 54)( 26, 53)( 27, 52)( 28, 51)( 29, 43)( 30, 49)( 31, 48)( 32, 47)
( 33, 46)( 34, 45)( 35, 44)( 72, 77)( 73, 76)( 74, 75)( 78, 99)( 79,105)
( 80,104)( 81,103)( 82,102)( 83,101)( 84,100)( 85, 92)( 86, 98)( 87, 97)
( 88, 96)( 89, 95)( 90, 94)( 91, 93)(106,141)(107,147)(108,146)(109,145)
(110,144)(111,143)(112,142)(113,169)(114,175)(115,174)(116,173)(117,172)
(118,171)(119,170)(120,162)(121,168)(122,167)(123,166)(124,165)(125,164)
(126,163)(127,155)(128,161)(129,160)(130,159)(131,158)(132,157)(133,156)
(134,148)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149)(177,182)
(178,181)(179,180)(183,204)(184,210)(185,209)(186,208)(187,207)(188,206)
(189,205)(190,197)(191,203)(192,202)(193,201)(194,200)(195,199)(196,198);;
s2 := (  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)(  8,107)
(  9,106)( 10,112)( 11,111)( 12,110)( 13,109)( 14,108)( 15,135)( 16,134)
( 17,140)( 18,139)( 19,138)( 20,137)( 21,136)( 22,128)( 23,127)( 24,133)
( 25,132)( 26,131)( 27,130)( 28,129)( 29,121)( 30,120)( 31,126)( 32,125)
( 33,124)( 34,123)( 35,122)( 36,149)( 37,148)( 38,154)( 39,153)( 40,152)
( 41,151)( 42,150)( 43,142)( 44,141)( 45,147)( 46,146)( 47,145)( 48,144)
( 49,143)( 50,170)( 51,169)( 52,175)( 53,174)( 54,173)( 55,172)( 56,171)
( 57,163)( 58,162)( 59,168)( 60,167)( 61,166)( 62,165)( 63,164)( 64,156)
( 65,155)( 66,161)( 67,160)( 68,159)( 69,158)( 70,157)( 71,184)( 72,183)
( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,177)( 79,176)( 80,182)
( 81,181)( 82,180)( 83,179)( 84,178)( 85,205)( 86,204)( 87,210)( 88,209)
( 89,208)( 90,207)( 91,206)( 92,198)( 93,197)( 94,203)( 95,202)( 96,201)
( 97,200)( 98,199)( 99,191)(100,190)(101,196)(102,195)(103,194)(104,193)
(105,192);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(210)!( 36, 71)( 37, 72)( 38, 73)( 39, 74)( 40, 75)( 41, 76)( 42, 77)
( 43, 78)( 44, 79)( 45, 80)( 46, 81)( 47, 82)( 48, 83)( 49, 84)( 50, 85)
( 51, 86)( 52, 87)( 53, 88)( 54, 89)( 55, 90)( 56, 91)( 57, 92)( 58, 93)
( 59, 94)( 60, 95)( 61, 96)( 62, 97)( 63, 98)( 64, 99)( 65,100)( 66,101)
( 67,102)( 68,103)( 69,104)( 70,105)(141,176)(142,177)(143,178)(144,179)
(145,180)(146,181)(147,182)(148,183)(149,184)(150,185)(151,186)(152,187)
(153,188)(154,189)(155,190)(156,191)(157,192)(158,193)(159,194)(160,195)
(161,196)(162,197)(163,198)(164,199)(165,200)(166,201)(167,202)(168,203)
(169,204)(170,205)(171,206)(172,207)(173,208)(174,209)(175,210);
s1 := Sym(210)!(  1, 36)(  2, 42)(  3, 41)(  4, 40)(  5, 39)(  6, 38)(  7, 37)
(  8, 64)(  9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 57)
( 16, 63)( 17, 62)( 18, 61)( 19, 60)( 20, 59)( 21, 58)( 22, 50)( 23, 56)
( 24, 55)( 25, 54)( 26, 53)( 27, 52)( 28, 51)( 29, 43)( 30, 49)( 31, 48)
( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 72, 77)( 73, 76)( 74, 75)( 78, 99)
( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100)( 85, 92)( 86, 98)
( 87, 97)( 88, 96)( 89, 95)( 90, 94)( 91, 93)(106,141)(107,147)(108,146)
(109,145)(110,144)(111,143)(112,142)(113,169)(114,175)(115,174)(116,173)
(117,172)(118,171)(119,170)(120,162)(121,168)(122,167)(123,166)(124,165)
(125,164)(126,163)(127,155)(128,161)(129,160)(130,159)(131,158)(132,157)
(133,156)(134,148)(135,154)(136,153)(137,152)(138,151)(139,150)(140,149)
(177,182)(178,181)(179,180)(183,204)(184,210)(185,209)(186,208)(187,207)
(188,206)(189,205)(190,197)(191,203)(192,202)(193,201)(194,200)(195,199)
(196,198);
s2 := Sym(210)!(  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)
(  8,107)(  9,106)( 10,112)( 11,111)( 12,110)( 13,109)( 14,108)( 15,135)
( 16,134)( 17,140)( 18,139)( 19,138)( 20,137)( 21,136)( 22,128)( 23,127)
( 24,133)( 25,132)( 26,131)( 27,130)( 28,129)( 29,121)( 30,120)( 31,126)
( 32,125)( 33,124)( 34,123)( 35,122)( 36,149)( 37,148)( 38,154)( 39,153)
( 40,152)( 41,151)( 42,150)( 43,142)( 44,141)( 45,147)( 46,146)( 47,145)
( 48,144)( 49,143)( 50,170)( 51,169)( 52,175)( 53,174)( 54,173)( 55,172)
( 56,171)( 57,163)( 58,162)( 59,168)( 60,167)( 61,166)( 62,165)( 63,164)
( 64,156)( 65,155)( 66,161)( 67,160)( 68,159)( 69,158)( 70,157)( 71,184)
( 72,183)( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,177)( 79,176)
( 80,182)( 81,181)( 82,180)( 83,179)( 84,178)( 85,205)( 86,204)( 87,210)
( 88,209)( 89,208)( 90,207)( 91,206)( 92,198)( 93,197)( 94,203)( 95,202)
( 96,201)( 97,200)( 98,199)( 99,191)(100,190)(101,196)(102,195)(103,194)
(104,193)(105,192);
poly := sub<Sym(210)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope