Polytope of Type {430}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {430}*860
Also Known As : 430-gon, {430}. if this polytope has another name.
Group : SmallGroup(860,10)
Rank : 2
Schlafli Type : {430}
Number of vertices, edges, etc : 430, 430
Order of s0s1 : 430
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {430,2} of size 1720
Vertex Figure Of :
   {2,430} of size 1720
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {215}*430
   5-fold quotients : {86}*172
   10-fold quotients : {43}*86
   43-fold quotients : {10}*20
   86-fold quotients : {5}*10
   215-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {860}*1720
Permutation Representation (GAP) :
s0 := (  2, 43)(  3, 42)(  4, 41)(  5, 40)(  6, 39)(  7, 38)(  8, 37)(  9, 36)
( 10, 35)( 11, 34)( 12, 33)( 13, 32)( 14, 31)( 15, 30)( 16, 29)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 44,173)( 45,215)( 46,214)
( 47,213)( 48,212)( 49,211)( 50,210)( 51,209)( 52,208)( 53,207)( 54,206)
( 55,205)( 56,204)( 57,203)( 58,202)( 59,201)( 60,200)( 61,199)( 62,198)
( 63,197)( 64,196)( 65,195)( 66,194)( 67,193)( 68,192)( 69,191)( 70,190)
( 71,189)( 72,188)( 73,187)( 74,186)( 75,185)( 76,184)( 77,183)( 78,182)
( 79,181)( 80,180)( 81,179)( 82,178)( 83,177)( 84,176)( 85,175)( 86,174)
( 87,130)( 88,172)( 89,171)( 90,170)( 91,169)( 92,168)( 93,167)( 94,166)
( 95,165)( 96,164)( 97,163)( 98,162)( 99,161)(100,160)(101,159)(102,158)
(103,157)(104,156)(105,155)(106,154)(107,153)(108,152)(109,151)(110,150)
(111,149)(112,148)(113,147)(114,146)(115,145)(116,144)(117,143)(118,142)
(119,141)(120,140)(121,139)(122,138)(123,137)(124,136)(125,135)(126,134)
(127,133)(128,132)(129,131)(217,258)(218,257)(219,256)(220,255)(221,254)
(222,253)(223,252)(224,251)(225,250)(226,249)(227,248)(228,247)(229,246)
(230,245)(231,244)(232,243)(233,242)(234,241)(235,240)(236,239)(237,238)
(259,388)(260,430)(261,429)(262,428)(263,427)(264,426)(265,425)(266,424)
(267,423)(268,422)(269,421)(270,420)(271,419)(272,418)(273,417)(274,416)
(275,415)(276,414)(277,413)(278,412)(279,411)(280,410)(281,409)(282,408)
(283,407)(284,406)(285,405)(286,404)(287,403)(288,402)(289,401)(290,400)
(291,399)(292,398)(293,397)(294,396)(295,395)(296,394)(297,393)(298,392)
(299,391)(300,390)(301,389)(302,345)(303,387)(304,386)(305,385)(306,384)
(307,383)(308,382)(309,381)(310,380)(311,379)(312,378)(313,377)(314,376)
(315,375)(316,374)(317,373)(318,372)(319,371)(320,370)(321,369)(322,368)
(323,367)(324,366)(325,365)(326,364)(327,363)(328,362)(329,361)(330,360)
(331,359)(332,358)(333,357)(334,356)(335,355)(336,354)(337,353)(338,352)
(339,351)(340,350)(341,349)(342,348)(343,347)(344,346);;
s1 := (  1,260)(  2,259)(  3,301)(  4,300)(  5,299)(  6,298)(  7,297)(  8,296)
(  9,295)( 10,294)( 11,293)( 12,292)( 13,291)( 14,290)( 15,289)( 16,288)
( 17,287)( 18,286)( 19,285)( 20,284)( 21,283)( 22,282)( 23,281)( 24,280)
( 25,279)( 26,278)( 27,277)( 28,276)( 29,275)( 30,274)( 31,273)( 32,272)
( 33,271)( 34,270)( 35,269)( 36,268)( 37,267)( 38,266)( 39,265)( 40,264)
( 41,263)( 42,262)( 43,261)( 44,217)( 45,216)( 46,258)( 47,257)( 48,256)
( 49,255)( 50,254)( 51,253)( 52,252)( 53,251)( 54,250)( 55,249)( 56,248)
( 57,247)( 58,246)( 59,245)( 60,244)( 61,243)( 62,242)( 63,241)( 64,240)
( 65,239)( 66,238)( 67,237)( 68,236)( 69,235)( 70,234)( 71,233)( 72,232)
( 73,231)( 74,230)( 75,229)( 76,228)( 77,227)( 78,226)( 79,225)( 80,224)
( 81,223)( 82,222)( 83,221)( 84,220)( 85,219)( 86,218)( 87,389)( 88,388)
( 89,430)( 90,429)( 91,428)( 92,427)( 93,426)( 94,425)( 95,424)( 96,423)
( 97,422)( 98,421)( 99,420)(100,419)(101,418)(102,417)(103,416)(104,415)
(105,414)(106,413)(107,412)(108,411)(109,410)(110,409)(111,408)(112,407)
(113,406)(114,405)(115,404)(116,403)(117,402)(118,401)(119,400)(120,399)
(121,398)(122,397)(123,396)(124,395)(125,394)(126,393)(127,392)(128,391)
(129,390)(130,346)(131,345)(132,387)(133,386)(134,385)(135,384)(136,383)
(137,382)(138,381)(139,380)(140,379)(141,378)(142,377)(143,376)(144,375)
(145,374)(146,373)(147,372)(148,371)(149,370)(150,369)(151,368)(152,367)
(153,366)(154,365)(155,364)(156,363)(157,362)(158,361)(159,360)(160,359)
(161,358)(162,357)(163,356)(164,355)(165,354)(166,353)(167,352)(168,351)
(169,350)(170,349)(171,348)(172,347)(173,303)(174,302)(175,344)(176,343)
(177,342)(178,341)(179,340)(180,339)(181,338)(182,337)(183,336)(184,335)
(185,334)(186,333)(187,332)(188,331)(189,330)(190,329)(191,328)(192,327)
(193,326)(194,325)(195,324)(196,323)(197,322)(198,321)(199,320)(200,319)
(201,318)(202,317)(203,316)(204,315)(205,314)(206,313)(207,312)(208,311)
(209,310)(210,309)(211,308)(212,307)(213,306)(214,305)(215,304);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(430)!(  2, 43)(  3, 42)(  4, 41)(  5, 40)(  6, 39)(  7, 38)(  8, 37)
(  9, 36)( 10, 35)( 11, 34)( 12, 33)( 13, 32)( 14, 31)( 15, 30)( 16, 29)
( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 44,173)( 45,215)
( 46,214)( 47,213)( 48,212)( 49,211)( 50,210)( 51,209)( 52,208)( 53,207)
( 54,206)( 55,205)( 56,204)( 57,203)( 58,202)( 59,201)( 60,200)( 61,199)
( 62,198)( 63,197)( 64,196)( 65,195)( 66,194)( 67,193)( 68,192)( 69,191)
( 70,190)( 71,189)( 72,188)( 73,187)( 74,186)( 75,185)( 76,184)( 77,183)
( 78,182)( 79,181)( 80,180)( 81,179)( 82,178)( 83,177)( 84,176)( 85,175)
( 86,174)( 87,130)( 88,172)( 89,171)( 90,170)( 91,169)( 92,168)( 93,167)
( 94,166)( 95,165)( 96,164)( 97,163)( 98,162)( 99,161)(100,160)(101,159)
(102,158)(103,157)(104,156)(105,155)(106,154)(107,153)(108,152)(109,151)
(110,150)(111,149)(112,148)(113,147)(114,146)(115,145)(116,144)(117,143)
(118,142)(119,141)(120,140)(121,139)(122,138)(123,137)(124,136)(125,135)
(126,134)(127,133)(128,132)(129,131)(217,258)(218,257)(219,256)(220,255)
(221,254)(222,253)(223,252)(224,251)(225,250)(226,249)(227,248)(228,247)
(229,246)(230,245)(231,244)(232,243)(233,242)(234,241)(235,240)(236,239)
(237,238)(259,388)(260,430)(261,429)(262,428)(263,427)(264,426)(265,425)
(266,424)(267,423)(268,422)(269,421)(270,420)(271,419)(272,418)(273,417)
(274,416)(275,415)(276,414)(277,413)(278,412)(279,411)(280,410)(281,409)
(282,408)(283,407)(284,406)(285,405)(286,404)(287,403)(288,402)(289,401)
(290,400)(291,399)(292,398)(293,397)(294,396)(295,395)(296,394)(297,393)
(298,392)(299,391)(300,390)(301,389)(302,345)(303,387)(304,386)(305,385)
(306,384)(307,383)(308,382)(309,381)(310,380)(311,379)(312,378)(313,377)
(314,376)(315,375)(316,374)(317,373)(318,372)(319,371)(320,370)(321,369)
(322,368)(323,367)(324,366)(325,365)(326,364)(327,363)(328,362)(329,361)
(330,360)(331,359)(332,358)(333,357)(334,356)(335,355)(336,354)(337,353)
(338,352)(339,351)(340,350)(341,349)(342,348)(343,347)(344,346);
s1 := Sym(430)!(  1,260)(  2,259)(  3,301)(  4,300)(  5,299)(  6,298)(  7,297)
(  8,296)(  9,295)( 10,294)( 11,293)( 12,292)( 13,291)( 14,290)( 15,289)
( 16,288)( 17,287)( 18,286)( 19,285)( 20,284)( 21,283)( 22,282)( 23,281)
( 24,280)( 25,279)( 26,278)( 27,277)( 28,276)( 29,275)( 30,274)( 31,273)
( 32,272)( 33,271)( 34,270)( 35,269)( 36,268)( 37,267)( 38,266)( 39,265)
( 40,264)( 41,263)( 42,262)( 43,261)( 44,217)( 45,216)( 46,258)( 47,257)
( 48,256)( 49,255)( 50,254)( 51,253)( 52,252)( 53,251)( 54,250)( 55,249)
( 56,248)( 57,247)( 58,246)( 59,245)( 60,244)( 61,243)( 62,242)( 63,241)
( 64,240)( 65,239)( 66,238)( 67,237)( 68,236)( 69,235)( 70,234)( 71,233)
( 72,232)( 73,231)( 74,230)( 75,229)( 76,228)( 77,227)( 78,226)( 79,225)
( 80,224)( 81,223)( 82,222)( 83,221)( 84,220)( 85,219)( 86,218)( 87,389)
( 88,388)( 89,430)( 90,429)( 91,428)( 92,427)( 93,426)( 94,425)( 95,424)
( 96,423)( 97,422)( 98,421)( 99,420)(100,419)(101,418)(102,417)(103,416)
(104,415)(105,414)(106,413)(107,412)(108,411)(109,410)(110,409)(111,408)
(112,407)(113,406)(114,405)(115,404)(116,403)(117,402)(118,401)(119,400)
(120,399)(121,398)(122,397)(123,396)(124,395)(125,394)(126,393)(127,392)
(128,391)(129,390)(130,346)(131,345)(132,387)(133,386)(134,385)(135,384)
(136,383)(137,382)(138,381)(139,380)(140,379)(141,378)(142,377)(143,376)
(144,375)(145,374)(146,373)(147,372)(148,371)(149,370)(150,369)(151,368)
(152,367)(153,366)(154,365)(155,364)(156,363)(157,362)(158,361)(159,360)
(160,359)(161,358)(162,357)(163,356)(164,355)(165,354)(166,353)(167,352)
(168,351)(169,350)(170,349)(171,348)(172,347)(173,303)(174,302)(175,344)
(176,343)(177,342)(178,341)(179,340)(180,339)(181,338)(182,337)(183,336)
(184,335)(185,334)(186,333)(187,332)(188,331)(189,330)(190,329)(191,328)
(192,327)(193,326)(194,325)(195,324)(196,323)(197,322)(198,321)(199,320)
(200,319)(201,318)(202,317)(203,316)(204,315)(205,314)(206,313)(207,312)
(208,311)(209,310)(210,309)(211,308)(212,307)(213,306)(214,305)(215,304);
poly := sub<Sym(430)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope