include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,6,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,12}*864a
if this polytope has a name.
Group : SmallGroup(864,2455)
Rank : 5
Schlafli Type : {2,3,6,12}
Number of vertices, edges, etc : 2, 3, 9, 36, 12
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,6,12,2} of size 1728
Vertex Figure Of :
{2,2,3,6,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,6,6}*432a
3-fold quotients : {2,3,2,12}*288
4-fold quotients : {2,3,6,3}*216
6-fold quotients : {2,3,2,6}*144
9-fold quotients : {2,3,2,4}*96
12-fold quotients : {2,3,2,3}*72
18-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,6,24}*1728a, {2,6,6,12}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)( 17, 19)
( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)( 35, 37)
( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)( 53, 55)
( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)( 71, 73)
( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)( 89, 91)
( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)(107,109);;
s2 := ( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)( 19, 20)
( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)( 37, 38)
( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)( 55, 56)
( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)( 73, 74)
( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)( 91, 92)
( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)(109,110);;
s3 := ( 3, 12)( 4, 14)( 5, 13)( 6, 16)( 7, 15)( 8, 17)( 9, 20)( 10, 19)
( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)( 33, 43)
( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)( 54, 56)
( 57, 93)( 58, 95)( 59, 94)( 60, 97)( 61, 96)( 62, 98)( 63,101)( 64,100)
( 65, 99)( 66, 84)( 67, 86)( 68, 85)( 69, 88)( 70, 87)( 71, 89)( 72, 92)
( 73, 91)( 74, 90)( 75,102)( 76,104)( 77,103)( 78,106)( 79,105)( 80,107)
( 81,110)( 82,109)( 83,108);;
s4 := ( 3, 57)( 4, 59)( 5, 58)( 6, 60)( 7, 62)( 8, 61)( 9, 63)( 10, 65)
( 11, 64)( 12, 75)( 13, 77)( 14, 76)( 15, 78)( 16, 80)( 17, 79)( 18, 81)
( 19, 83)( 20, 82)( 21, 66)( 22, 68)( 23, 67)( 24, 69)( 25, 71)( 26, 70)
( 27, 72)( 28, 74)( 29, 73)( 30, 84)( 31, 86)( 32, 85)( 33, 87)( 34, 89)
( 35, 88)( 36, 90)( 37, 92)( 38, 91)( 39,102)( 40,104)( 41,103)( 42,105)
( 43,107)( 44,106)( 45,108)( 46,110)( 47,109)( 48, 93)( 49, 95)( 50, 94)
( 51, 96)( 52, 98)( 53, 97)( 54, 99)( 55,101)( 56,100);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 4, 5)( 6, 9)( 7, 11)( 8, 10)( 13, 14)( 15, 18)( 16, 20)
( 17, 19)( 22, 23)( 24, 27)( 25, 29)( 26, 28)( 31, 32)( 33, 36)( 34, 38)
( 35, 37)( 40, 41)( 42, 45)( 43, 47)( 44, 46)( 49, 50)( 51, 54)( 52, 56)
( 53, 55)( 58, 59)( 60, 63)( 61, 65)( 62, 64)( 67, 68)( 69, 72)( 70, 74)
( 71, 73)( 76, 77)( 78, 81)( 79, 83)( 80, 82)( 85, 86)( 87, 90)( 88, 92)
( 89, 91)( 94, 95)( 96, 99)( 97,101)( 98,100)(103,104)(105,108)(106,110)
(107,109);
s2 := Sym(110)!( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)
( 19, 20)( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)
( 37, 38)( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)
( 55, 56)( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)
( 73, 74)( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)
( 91, 92)( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)
(109,110);
s3 := Sym(110)!( 3, 12)( 4, 14)( 5, 13)( 6, 16)( 7, 15)( 8, 17)( 9, 20)
( 10, 19)( 11, 18)( 22, 23)( 24, 25)( 27, 29)( 30, 39)( 31, 41)( 32, 40)
( 33, 43)( 34, 42)( 35, 44)( 36, 47)( 37, 46)( 38, 45)( 49, 50)( 51, 52)
( 54, 56)( 57, 93)( 58, 95)( 59, 94)( 60, 97)( 61, 96)( 62, 98)( 63,101)
( 64,100)( 65, 99)( 66, 84)( 67, 86)( 68, 85)( 69, 88)( 70, 87)( 71, 89)
( 72, 92)( 73, 91)( 74, 90)( 75,102)( 76,104)( 77,103)( 78,106)( 79,105)
( 80,107)( 81,110)( 82,109)( 83,108);
s4 := Sym(110)!( 3, 57)( 4, 59)( 5, 58)( 6, 60)( 7, 62)( 8, 61)( 9, 63)
( 10, 65)( 11, 64)( 12, 75)( 13, 77)( 14, 76)( 15, 78)( 16, 80)( 17, 79)
( 18, 81)( 19, 83)( 20, 82)( 21, 66)( 22, 68)( 23, 67)( 24, 69)( 25, 71)
( 26, 70)( 27, 72)( 28, 74)( 29, 73)( 30, 84)( 31, 86)( 32, 85)( 33, 87)
( 34, 89)( 35, 88)( 36, 90)( 37, 92)( 38, 91)( 39,102)( 40,104)( 41,103)
( 42,105)( 43,107)( 44,106)( 45,108)( 46,110)( 47,109)( 48, 93)( 49, 95)
( 50, 94)( 51, 96)( 52, 98)( 53, 97)( 54, 99)( 55,101)( 56,100);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope