include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6,6}*432a
if this polytope has a name.
Group : SmallGroup(432,545)
Rank : 5
Schlafli Type : {2,3,6,6}
Number of vertices, edges, etc : 2, 3, 9, 18, 6
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,3,6,6,2} of size 864
{2,3,6,6,4} of size 1728
{2,3,6,6,4} of size 1728
{2,3,6,6,4} of size 1728
Vertex Figure Of :
{2,2,3,6,6} of size 864
{3,2,3,6,6} of size 1296
{4,2,3,6,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,3,6,3}*216
3-fold quotients : {2,3,2,6}*144
6-fold quotients : {2,3,2,3}*72
9-fold quotients : {2,3,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,3,6,12}*864a, {2,6,6,6}*864a
3-fold covers : {2,3,6,18}*1296a, {2,9,6,6}*1296a, {2,3,6,6}*1296a, {2,3,6,6}*1296b, {6,3,6,6}*1296a, {2,3,6,6}*1296e
4-fold covers : {2,3,6,24}*1728a, {2,6,6,12}*1728a, {2,12,6,6}*1728a, {4,6,6,6}*1728a, {2,6,12,6}*1728a, {4,3,6,6}*1728a, {2,3,12,6}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20);;
s2 := ( 4, 5)( 6, 7)( 9,11)(13,14)(15,16)(18,20);;
s3 := ( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20);;
s4 := ( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(20)!(1,2);
s1 := Sym(20)!( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20);
s2 := Sym(20)!( 4, 5)( 6, 7)( 9,11)(13,14)(15,16)(18,20);
s3 := Sym(20)!( 3, 6)( 4, 8)( 5, 7)(10,11)(12,15)(13,17)(14,16)(19,20);
s4 := Sym(20)!( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope