include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,6}*864b
if this polytope has a name.
Group : SmallGroup(864,2455)
Rank : 4
Schlafli Type : {2,12,6}
Number of vertices, edges, etc : 2, 36, 108, 18
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,12,6,2} of size 1728
Vertex Figure Of :
{2,2,12,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,6,6}*432b
3-fold quotients : {2,12,6}*288a
4-fold quotients : {2,6,6}*216
6-fold quotients : {2,6,6}*144a
9-fold quotients : {2,12,2}*96, {2,4,6}*96a
18-fold quotients : {2,2,6}*48, {2,6,2}*48
27-fold quotients : {2,4,2}*32
36-fold quotients : {2,2,3}*24, {2,3,2}*24
54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,12,6}*1728b, {2,24,6}*1728b, {2,12,12}*1728c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7, 8)( 10, 11)( 12, 21)( 13, 23)( 14, 22)( 15, 24)( 16, 26)
( 17, 25)( 18, 27)( 19, 29)( 20, 28)( 31, 32)( 34, 35)( 37, 38)( 39, 48)
( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)( 45, 54)( 46, 56)( 47, 55)
( 57, 84)( 58, 86)( 59, 85)( 60, 87)( 61, 89)( 62, 88)( 63, 90)( 64, 92)
( 65, 91)( 66,102)( 67,104)( 68,103)( 69,105)( 70,107)( 71,106)( 72,108)
( 73,110)( 74,109)( 75, 93)( 76, 95)( 77, 94)( 78, 96)( 79, 98)( 80, 97)
( 81, 99)( 82,101)( 83,100);;
s2 := ( 3, 66)( 4, 67)( 5, 68)( 6, 74)( 7, 72)( 8, 73)( 9, 70)( 10, 71)
( 11, 69)( 12, 57)( 13, 58)( 14, 59)( 15, 65)( 16, 63)( 17, 64)( 18, 61)
( 19, 62)( 20, 60)( 21, 75)( 22, 76)( 23, 77)( 24, 83)( 25, 81)( 26, 82)
( 27, 79)( 28, 80)( 29, 78)( 30, 93)( 31, 94)( 32, 95)( 33,101)( 34, 99)
( 35,100)( 36, 97)( 37, 98)( 38, 96)( 39, 84)( 40, 85)( 41, 86)( 42, 92)
( 43, 90)( 44, 91)( 45, 88)( 46, 89)( 47, 87)( 48,102)( 49,103)( 50,104)
( 51,110)( 52,108)( 53,109)( 54,106)( 55,107)( 56,105);;
s3 := ( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)( 19, 20)
( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)( 37, 38)
( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)( 55, 56)
( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)( 73, 74)
( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)( 91, 92)
( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)(109,110);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 4, 5)( 7, 8)( 10, 11)( 12, 21)( 13, 23)( 14, 22)( 15, 24)
( 16, 26)( 17, 25)( 18, 27)( 19, 29)( 20, 28)( 31, 32)( 34, 35)( 37, 38)
( 39, 48)( 40, 50)( 41, 49)( 42, 51)( 43, 53)( 44, 52)( 45, 54)( 46, 56)
( 47, 55)( 57, 84)( 58, 86)( 59, 85)( 60, 87)( 61, 89)( 62, 88)( 63, 90)
( 64, 92)( 65, 91)( 66,102)( 67,104)( 68,103)( 69,105)( 70,107)( 71,106)
( 72,108)( 73,110)( 74,109)( 75, 93)( 76, 95)( 77, 94)( 78, 96)( 79, 98)
( 80, 97)( 81, 99)( 82,101)( 83,100);
s2 := Sym(110)!( 3, 66)( 4, 67)( 5, 68)( 6, 74)( 7, 72)( 8, 73)( 9, 70)
( 10, 71)( 11, 69)( 12, 57)( 13, 58)( 14, 59)( 15, 65)( 16, 63)( 17, 64)
( 18, 61)( 19, 62)( 20, 60)( 21, 75)( 22, 76)( 23, 77)( 24, 83)( 25, 81)
( 26, 82)( 27, 79)( 28, 80)( 29, 78)( 30, 93)( 31, 94)( 32, 95)( 33,101)
( 34, 99)( 35,100)( 36, 97)( 37, 98)( 38, 96)( 39, 84)( 40, 85)( 41, 86)
( 42, 92)( 43, 90)( 44, 91)( 45, 88)( 46, 89)( 47, 87)( 48,102)( 49,103)
( 50,104)( 51,110)( 52,108)( 53,109)( 54,106)( 55,107)( 56,105);
s3 := Sym(110)!( 3, 6)( 4, 8)( 5, 7)( 10, 11)( 12, 15)( 13, 17)( 14, 16)
( 19, 20)( 21, 24)( 22, 26)( 23, 25)( 28, 29)( 30, 33)( 31, 35)( 32, 34)
( 37, 38)( 39, 42)( 40, 44)( 41, 43)( 46, 47)( 48, 51)( 49, 53)( 50, 52)
( 55, 56)( 57, 60)( 58, 62)( 59, 61)( 64, 65)( 66, 69)( 67, 71)( 68, 70)
( 73, 74)( 75, 78)( 76, 80)( 77, 79)( 82, 83)( 84, 87)( 85, 89)( 86, 88)
( 91, 92)( 93, 96)( 94, 98)( 95, 97)(100,101)(102,105)(103,107)(104,106)
(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s1*s2*s3*s2*s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope