Polytope of Type {6,4,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,18}*864
Also Known As : {{6,4|2},{4,18|2}}. if this polytope has another name.
Group : SmallGroup(864,2462)
Rank : 4
Schlafli Type : {6,4,18}
Number of vertices, edges, etc : 6, 12, 36, 18
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,4,18,2} of size 1728
Vertex Figure Of :
   {2,6,4,18} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,2,18}*432
   3-fold quotients : {2,4,18}*288a, {6,4,6}*288
   4-fold quotients : {3,2,18}*216, {6,2,9}*216
   6-fold quotients : {2,2,18}*144, {6,2,6}*144
   8-fold quotients : {3,2,9}*108
   9-fold quotients : {2,4,6}*96a, {6,4,2}*96a
   12-fold quotients : {2,2,9}*72, {3,2,6}*72, {6,2,3}*72
   18-fold quotients : {2,2,6}*48, {6,2,2}*48
   24-fold quotients : {3,2,3}*36
   27-fold quotients : {2,4,2}*32
   36-fold quotients : {2,2,3}*24, {3,2,2}*24
   54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,4,18}*1728, {6,4,36}*1728, {6,8,18}*1728
Permutation Representation (GAP) :
s0 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)( 69, 72)
( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)( 95, 98)
( 96, 99)(103,106)(104,107)(105,108);;
s1 := (  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)( 20, 23)
( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)( 46, 49)
( 47, 50)( 48, 51)( 55, 85)( 56, 86)( 57, 87)( 58, 82)( 59, 83)( 60, 84)
( 61, 88)( 62, 89)( 63, 90)( 64, 94)( 65, 95)( 66, 96)( 67, 91)( 68, 92)
( 69, 93)( 70, 97)( 71, 98)( 72, 99)( 73,103)( 74,104)( 75,105)( 76,100)
( 77,101)( 78,102)( 79,106)( 80,107)( 81,108);;
s2 := (  1, 55)(  2, 57)(  3, 56)(  4, 58)(  5, 60)(  6, 59)(  7, 61)(  8, 63)
(  9, 62)( 10, 75)( 11, 74)( 12, 73)( 13, 78)( 14, 77)( 15, 76)( 16, 81)
( 17, 80)( 18, 79)( 19, 66)( 20, 65)( 21, 64)( 22, 69)( 23, 68)( 24, 67)
( 25, 72)( 26, 71)( 27, 70)( 28, 82)( 29, 84)( 30, 83)( 31, 85)( 32, 87)
( 33, 86)( 34, 88)( 35, 90)( 36, 89)( 37,102)( 38,101)( 39,100)( 40,105)
( 41,104)( 42,103)( 43,108)( 44,107)( 45,106)( 46, 93)( 47, 92)( 48, 91)
( 49, 96)( 50, 95)( 51, 94)( 52, 99)( 53, 98)( 54, 97);;
s3 := (  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)(  8, 18)
(  9, 17)( 19, 21)( 22, 24)( 25, 27)( 28, 37)( 29, 39)( 30, 38)( 31, 40)
( 32, 42)( 33, 41)( 34, 43)( 35, 45)( 36, 44)( 46, 48)( 49, 51)( 52, 54)
( 55, 64)( 56, 66)( 57, 65)( 58, 67)( 59, 69)( 60, 68)( 61, 70)( 62, 72)
( 63, 71)( 73, 75)( 76, 78)( 79, 81)( 82, 91)( 83, 93)( 84, 92)( 85, 94)
( 86, 96)( 87, 95)( 88, 97)( 89, 99)( 90, 98)(100,102)(103,105)(106,108);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 58, 61)( 59, 62)( 60, 63)( 67, 70)( 68, 71)
( 69, 72)( 76, 79)( 77, 80)( 78, 81)( 85, 88)( 86, 89)( 87, 90)( 94, 97)
( 95, 98)( 96, 99)(103,106)(104,107)(105,108);
s1 := Sym(108)!(  1,  4)(  2,  5)(  3,  6)( 10, 13)( 11, 14)( 12, 15)( 19, 22)
( 20, 23)( 21, 24)( 28, 31)( 29, 32)( 30, 33)( 37, 40)( 38, 41)( 39, 42)
( 46, 49)( 47, 50)( 48, 51)( 55, 85)( 56, 86)( 57, 87)( 58, 82)( 59, 83)
( 60, 84)( 61, 88)( 62, 89)( 63, 90)( 64, 94)( 65, 95)( 66, 96)( 67, 91)
( 68, 92)( 69, 93)( 70, 97)( 71, 98)( 72, 99)( 73,103)( 74,104)( 75,105)
( 76,100)( 77,101)( 78,102)( 79,106)( 80,107)( 81,108);
s2 := Sym(108)!(  1, 55)(  2, 57)(  3, 56)(  4, 58)(  5, 60)(  6, 59)(  7, 61)
(  8, 63)(  9, 62)( 10, 75)( 11, 74)( 12, 73)( 13, 78)( 14, 77)( 15, 76)
( 16, 81)( 17, 80)( 18, 79)( 19, 66)( 20, 65)( 21, 64)( 22, 69)( 23, 68)
( 24, 67)( 25, 72)( 26, 71)( 27, 70)( 28, 82)( 29, 84)( 30, 83)( 31, 85)
( 32, 87)( 33, 86)( 34, 88)( 35, 90)( 36, 89)( 37,102)( 38,101)( 39,100)
( 40,105)( 41,104)( 42,103)( 43,108)( 44,107)( 45,106)( 46, 93)( 47, 92)
( 48, 91)( 49, 96)( 50, 95)( 51, 94)( 52, 99)( 53, 98)( 54, 97);
s3 := Sym(108)!(  1, 10)(  2, 12)(  3, 11)(  4, 13)(  5, 15)(  6, 14)(  7, 16)
(  8, 18)(  9, 17)( 19, 21)( 22, 24)( 25, 27)( 28, 37)( 29, 39)( 30, 38)
( 31, 40)( 32, 42)( 33, 41)( 34, 43)( 35, 45)( 36, 44)( 46, 48)( 49, 51)
( 52, 54)( 55, 64)( 56, 66)( 57, 65)( 58, 67)( 59, 69)( 60, 68)( 61, 70)
( 62, 72)( 63, 71)( 73, 75)( 76, 78)( 79, 81)( 82, 91)( 83, 93)( 84, 92)
( 85, 94)( 86, 96)( 87, 95)( 88, 97)( 89, 99)( 90, 98)(100,102)(103,105)
(106,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope