include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,9,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,9,6}*864
if this polytope has a name.
Group : SmallGroup(864,3999)
Rank : 5
Schlafli Type : {2,4,9,6}
Number of vertices, edges, etc : 2, 4, 18, 27, 6
Order of s0s1s2s3s4 : 18
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,4,9,6,2} of size 1728
Vertex Figure Of :
{2,2,4,9,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,4,9,2}*288, {2,4,3,6}*288
9-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,9,6}*1728, {2,4,18,6}*1728d, {2,4,18,6}*1728e
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)( 16, 18)
( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)( 32, 34)
( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)( 48, 50)
( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)( 64, 66)
( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)( 80, 82)
( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)( 96, 98)
( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110);;
s2 := ( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 15, 27)( 16, 29)( 17, 28)
( 18, 30)( 19, 35)( 20, 37)( 21, 36)( 22, 38)( 23, 31)( 24, 33)( 25, 32)
( 26, 34)( 39, 79)( 40, 81)( 41, 80)( 42, 82)( 43, 75)( 44, 77)( 45, 76)
( 46, 78)( 47, 83)( 48, 85)( 49, 84)( 50, 86)( 51,103)( 52,105)( 53,104)
( 54,106)( 55, 99)( 56,101)( 57,100)( 58,102)( 59,107)( 60,109)( 61,108)
( 62,110)( 63, 91)( 64, 93)( 65, 92)( 66, 94)( 67, 87)( 68, 89)( 69, 88)
( 70, 90)( 71, 95)( 72, 97)( 73, 96)( 74, 98);;
s3 := ( 3, 87)( 4, 90)( 5, 89)( 6, 88)( 7, 95)( 8, 98)( 9, 97)( 10, 96)
( 11, 91)( 12, 94)( 13, 93)( 14, 92)( 15, 75)( 16, 78)( 17, 77)( 18, 76)
( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 79)( 24, 82)( 25, 81)( 26, 80)
( 27, 99)( 28,102)( 29,101)( 30,100)( 31,107)( 32,110)( 33,109)( 34,108)
( 35,103)( 36,106)( 37,105)( 38,104)( 39, 51)( 40, 54)( 41, 53)( 42, 52)
( 43, 59)( 44, 62)( 45, 61)( 46, 60)( 47, 55)( 48, 58)( 49, 57)( 50, 56)
( 64, 66)( 67, 71)( 68, 74)( 69, 73)( 70, 72);;
s4 := ( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 33)( 22, 34)
( 23, 35)( 24, 36)( 25, 37)( 26, 38)( 51, 63)( 52, 64)( 53, 65)( 54, 66)
( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 73)( 62, 74)
( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)( 93,105)( 94,106)
( 95,107)( 96,108)( 97,109)( 98,110);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3, s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!(1,2);
s1 := Sym(110)!( 3, 5)( 4, 6)( 7, 9)( 8, 10)( 11, 13)( 12, 14)( 15, 17)
( 16, 18)( 19, 21)( 20, 22)( 23, 25)( 24, 26)( 27, 29)( 28, 30)( 31, 33)
( 32, 34)( 35, 37)( 36, 38)( 39, 41)( 40, 42)( 43, 45)( 44, 46)( 47, 49)
( 48, 50)( 51, 53)( 52, 54)( 55, 57)( 56, 58)( 59, 61)( 60, 62)( 63, 65)
( 64, 66)( 67, 69)( 68, 70)( 71, 73)( 72, 74)( 75, 77)( 76, 78)( 79, 81)
( 80, 82)( 83, 85)( 84, 86)( 87, 89)( 88, 90)( 91, 93)( 92, 94)( 95, 97)
( 96, 98)( 99,101)(100,102)(103,105)(104,106)(107,109)(108,110);
s2 := Sym(110)!( 4, 5)( 7, 11)( 8, 13)( 9, 12)( 10, 14)( 15, 27)( 16, 29)
( 17, 28)( 18, 30)( 19, 35)( 20, 37)( 21, 36)( 22, 38)( 23, 31)( 24, 33)
( 25, 32)( 26, 34)( 39, 79)( 40, 81)( 41, 80)( 42, 82)( 43, 75)( 44, 77)
( 45, 76)( 46, 78)( 47, 83)( 48, 85)( 49, 84)( 50, 86)( 51,103)( 52,105)
( 53,104)( 54,106)( 55, 99)( 56,101)( 57,100)( 58,102)( 59,107)( 60,109)
( 61,108)( 62,110)( 63, 91)( 64, 93)( 65, 92)( 66, 94)( 67, 87)( 68, 89)
( 69, 88)( 70, 90)( 71, 95)( 72, 97)( 73, 96)( 74, 98);
s3 := Sym(110)!( 3, 87)( 4, 90)( 5, 89)( 6, 88)( 7, 95)( 8, 98)( 9, 97)
( 10, 96)( 11, 91)( 12, 94)( 13, 93)( 14, 92)( 15, 75)( 16, 78)( 17, 77)
( 18, 76)( 19, 83)( 20, 86)( 21, 85)( 22, 84)( 23, 79)( 24, 82)( 25, 81)
( 26, 80)( 27, 99)( 28,102)( 29,101)( 30,100)( 31,107)( 32,110)( 33,109)
( 34,108)( 35,103)( 36,106)( 37,105)( 38,104)( 39, 51)( 40, 54)( 41, 53)
( 42, 52)( 43, 59)( 44, 62)( 45, 61)( 46, 60)( 47, 55)( 48, 58)( 49, 57)
( 50, 56)( 64, 66)( 67, 71)( 68, 74)( 69, 73)( 70, 72);
s4 := Sym(110)!( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)( 21, 33)
( 22, 34)( 23, 35)( 24, 36)( 25, 37)( 26, 38)( 51, 63)( 52, 64)( 53, 65)
( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)( 61, 73)
( 62, 74)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)( 93,105)
( 94,106)( 95,107)( 96,108)( 97,109)( 98,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s4*s2*s3*s4*s3*s4*s2*s3*s4*s3,
s2*s3*s4*s3*s2*s3*s2*s3*s4*s3*s2*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope