include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,4,2}*864b
if this polytope has a name.
Group : SmallGroup(864,4686)
Rank : 5
Schlafli Type : {3,6,4,2}
Number of vertices, edges, etc : 3, 27, 36, 12, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{3,6,4,2,2} of size 1728
Vertex Figure Of :
{2,3,6,4,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
9-fold quotients : {3,2,4,2}*96
18-fold quotients : {3,2,2,2}*48
Covers (Minimal Covers in Boldface) :
2-fold covers : {3,6,8,2}*1728b, {3,6,4,4}*1728b, {6,6,4,2}*1728k
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17);;
s1 := ( 1, 8)( 2, 7)( 3, 9)( 4, 5)(10,14)(11,13)(12,15)(16,17);;
s2 := (4,7)(5,8)(6,9);;
s3 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15);;
s4 := (19,20);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(20)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17);
s1 := Sym(20)!( 1, 8)( 2, 7)( 3, 9)( 4, 5)(10,14)(11,13)(12,15)(16,17);
s2 := Sym(20)!(4,7)(5,8)(6,9);
s3 := Sym(20)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15);
s4 := Sym(20)!(19,20);
poly := sub<Sym(20)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >;
to this polytope