include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,3,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,3,6,2}*864
if this polytope has a name.
Group : SmallGroup(864,4704)
Rank : 6
Schlafli Type : {2,6,3,6,2}
Number of vertices, edges, etc : 2, 6, 9, 9, 6, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,6,3,6,2,2} of size 1728
Vertex Figure Of :
{2,2,6,3,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,2,3,6,2}*288, {2,6,3,2,2}*288
9-fold quotients : {2,2,3,2,2}*96
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,6,3,6,4}*1728, {4,6,3,6,2}*1728, {2,6,6,6,2}*1728f
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);;
s2 := ( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)(22,23)
(24,27)(25,29)(26,28);;
s3 := ( 3, 7)( 4, 6)( 5, 8)( 9,10)(12,25)(13,24)(14,26)(15,22)(16,21)(17,23)
(18,28)(19,27)(20,29);;
s4 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29);;
s5 := (30,31);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!(1,2);
s1 := Sym(31)!(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29);
s2 := Sym(31)!( 3,12)( 4,14)( 5,13)( 6,18)( 7,20)( 8,19)( 9,15)(10,17)(11,16)
(22,23)(24,27)(25,29)(26,28);
s3 := Sym(31)!( 3, 7)( 4, 6)( 5, 8)( 9,10)(12,25)(13,24)(14,26)(15,22)(16,21)
(17,23)(18,28)(19,27)(20,29);
s4 := Sym(31)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29);
s5 := Sym(31)!(30,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s2*s3*s2*s3*s2*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2,
s4*s2*s3*s4*s3*s4*s2*s3*s4*s3 >;
to this polytope