Polytope of Type {111,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {111,4}*888
if this polytope has a name.
Group : SmallGroup(888,48)
Rank : 3
Schlafli Type : {111,4}
Number of vertices, edges, etc : 111, 222, 4
Order of s0s1s2 : 111
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Non-Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {111,4,2} of size 1776
Vertex Figure Of :
   {2,111,4} of size 1776
Quotients (Maximal Quotients in Boldface) :
   37-fold quotients : {3,4}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {111,4}*1776, {222,4}*1776b, {222,4}*1776c
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,145)(  6,147)(  7,146)(  8,148)(  9,141)( 10,143)( 11,142)
( 12,144)( 13,137)( 14,139)( 15,138)( 16,140)( 17,133)( 18,135)( 19,134)
( 20,136)( 21,129)( 22,131)( 23,130)( 24,132)( 25,125)( 26,127)( 27,126)
( 28,128)( 29,121)( 30,123)( 31,122)( 32,124)( 33,117)( 34,119)( 35,118)
( 36,120)( 37,113)( 38,115)( 39,114)( 40,116)( 41,109)( 42,111)( 43,110)
( 44,112)( 45,105)( 46,107)( 47,106)( 48,108)( 49,101)( 50,103)( 51,102)
( 52,104)( 53, 97)( 54, 99)( 55, 98)( 56,100)( 57, 93)( 58, 95)( 59, 94)
( 60, 96)( 61, 89)( 62, 91)( 63, 90)( 64, 92)( 65, 85)( 66, 87)( 67, 86)
( 68, 88)( 69, 81)( 70, 83)( 71, 82)( 72, 84)( 73, 77)( 74, 79)( 75, 78)
( 76, 80);;
s1 := (  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9,145)( 10,146)( 11,148)( 12,147)
( 13,141)( 14,142)( 15,144)( 16,143)( 17,137)( 18,138)( 19,140)( 20,139)
( 21,133)( 22,134)( 23,136)( 24,135)( 25,129)( 26,130)( 27,132)( 28,131)
( 29,125)( 30,126)( 31,128)( 32,127)( 33,121)( 34,122)( 35,124)( 36,123)
( 37,117)( 38,118)( 39,120)( 40,119)( 41,113)( 42,114)( 43,116)( 44,115)
( 45,109)( 46,110)( 47,112)( 48,111)( 49,105)( 50,106)( 51,108)( 52,107)
( 53,101)( 54,102)( 55,104)( 56,103)( 57, 97)( 58, 98)( 59,100)( 60, 99)
( 61, 93)( 62, 94)( 63, 96)( 64, 95)( 65, 89)( 66, 90)( 67, 92)( 68, 91)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 81)( 74, 82)( 75, 84)( 76, 83)
( 79, 80);;
s2 := (  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)( 14, 15)
( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)( 30, 31)
( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)( 46, 47)
( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)( 62, 63)
( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)( 78, 79)
( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)( 94, 95)
( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)(110,111)
(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)
(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)
(145,148)(146,147);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(148)!(  2,  3)(  5,145)(  6,147)(  7,146)(  8,148)(  9,141)( 10,143)
( 11,142)( 12,144)( 13,137)( 14,139)( 15,138)( 16,140)( 17,133)( 18,135)
( 19,134)( 20,136)( 21,129)( 22,131)( 23,130)( 24,132)( 25,125)( 26,127)
( 27,126)( 28,128)( 29,121)( 30,123)( 31,122)( 32,124)( 33,117)( 34,119)
( 35,118)( 36,120)( 37,113)( 38,115)( 39,114)( 40,116)( 41,109)( 42,111)
( 43,110)( 44,112)( 45,105)( 46,107)( 47,106)( 48,108)( 49,101)( 50,103)
( 51,102)( 52,104)( 53, 97)( 54, 99)( 55, 98)( 56,100)( 57, 93)( 58, 95)
( 59, 94)( 60, 96)( 61, 89)( 62, 91)( 63, 90)( 64, 92)( 65, 85)( 66, 87)
( 67, 86)( 68, 88)( 69, 81)( 70, 83)( 71, 82)( 72, 84)( 73, 77)( 74, 79)
( 75, 78)( 76, 80);
s1 := Sym(148)!(  1,  5)(  2,  6)(  3,  8)(  4,  7)(  9,145)( 10,146)( 11,148)
( 12,147)( 13,141)( 14,142)( 15,144)( 16,143)( 17,137)( 18,138)( 19,140)
( 20,139)( 21,133)( 22,134)( 23,136)( 24,135)( 25,129)( 26,130)( 27,132)
( 28,131)( 29,125)( 30,126)( 31,128)( 32,127)( 33,121)( 34,122)( 35,124)
( 36,123)( 37,117)( 38,118)( 39,120)( 40,119)( 41,113)( 42,114)( 43,116)
( 44,115)( 45,109)( 46,110)( 47,112)( 48,111)( 49,105)( 50,106)( 51,108)
( 52,107)( 53,101)( 54,102)( 55,104)( 56,103)( 57, 97)( 58, 98)( 59,100)
( 60, 99)( 61, 93)( 62, 94)( 63, 96)( 64, 95)( 65, 89)( 66, 90)( 67, 92)
( 68, 91)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 81)( 74, 82)( 75, 84)
( 76, 83)( 79, 80);
s2 := Sym(148)!(  1,  4)(  2,  3)(  5,  8)(  6,  7)(  9, 12)( 10, 11)( 13, 16)
( 14, 15)( 17, 20)( 18, 19)( 21, 24)( 22, 23)( 25, 28)( 26, 27)( 29, 32)
( 30, 31)( 33, 36)( 34, 35)( 37, 40)( 38, 39)( 41, 44)( 42, 43)( 45, 48)
( 46, 47)( 49, 52)( 50, 51)( 53, 56)( 54, 55)( 57, 60)( 58, 59)( 61, 64)
( 62, 63)( 65, 68)( 66, 67)( 69, 72)( 70, 71)( 73, 76)( 74, 75)( 77, 80)
( 78, 79)( 81, 84)( 82, 83)( 85, 88)( 86, 87)( 89, 92)( 90, 91)( 93, 96)
( 94, 95)( 97,100)( 98, 99)(101,104)(102,103)(105,108)(106,107)(109,112)
(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)
(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)
(142,143)(145,148)(146,147);
poly := sub<Sym(148)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s1*s0*s2*s1*s2*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope