Polytope of Type {112,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {112,4}*896a
Also Known As : {112,4|2}. if this polytope has another name.
Group : SmallGroup(896,1628)
Rank : 3
Schlafli Type : {112,4}
Number of vertices, edges, etc : 112, 224, 4
Order of s0s1s2 : 112
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {112,4,2} of size 1792
Vertex Figure Of :
   {2,112,4} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {56,4}*448a, {112,2}*448
   4-fold quotients : {28,4}*224, {56,2}*224
   7-fold quotients : {16,4}*128a
   8-fold quotients : {28,2}*112, {14,4}*112
   14-fold quotients : {8,4}*64a, {16,2}*64
   16-fold quotients : {14,2}*56
   28-fold quotients : {4,4}*32, {8,2}*32
   32-fold quotients : {7,2}*28
   56-fold quotients : {2,4}*16, {4,2}*16
   112-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {112,4}*1792a, {112,8}*1792c, {112,8}*1792d, {224,4}*1792a, {224,4}*1792b
Permutation Representation (GAP) :
s0 := (  1,225)(  2,231)(  3,230)(  4,229)(  5,228)(  6,227)(  7,226)(  8,232)
(  9,238)( 10,237)( 11,236)( 12,235)( 13,234)( 14,233)( 15,246)( 16,252)
( 17,251)( 18,250)( 19,249)( 20,248)( 21,247)( 22,239)( 23,245)( 24,244)
( 25,243)( 26,242)( 27,241)( 28,240)( 29,253)( 30,259)( 31,258)( 32,257)
( 33,256)( 34,255)( 35,254)( 36,260)( 37,266)( 38,265)( 39,264)( 40,263)
( 41,262)( 42,261)( 43,274)( 44,280)( 45,279)( 46,278)( 47,277)( 48,276)
( 49,275)( 50,267)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)( 56,268)
( 57,295)( 58,301)( 59,300)( 60,299)( 61,298)( 62,297)( 63,296)( 64,302)
( 65,308)( 66,307)( 67,306)( 68,305)( 69,304)( 70,303)( 71,281)( 72,287)
( 73,286)( 74,285)( 75,284)( 76,283)( 77,282)( 78,288)( 79,294)( 80,293)
( 81,292)( 82,291)( 83,290)( 84,289)( 85,323)( 86,329)( 87,328)( 88,327)
( 89,326)( 90,325)( 91,324)( 92,330)( 93,336)( 94,335)( 95,334)( 96,333)
( 97,332)( 98,331)( 99,309)(100,315)(101,314)(102,313)(103,312)(104,311)
(105,310)(106,316)(107,322)(108,321)(109,320)(110,319)(111,318)(112,317)
(113,337)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)(120,344)
(121,350)(122,349)(123,348)(124,347)(125,346)(126,345)(127,358)(128,364)
(129,363)(130,362)(131,361)(132,360)(133,359)(134,351)(135,357)(136,356)
(137,355)(138,354)(139,353)(140,352)(141,365)(142,371)(143,370)(144,369)
(145,368)(146,367)(147,366)(148,372)(149,378)(150,377)(151,376)(152,375)
(153,374)(154,373)(155,386)(156,392)(157,391)(158,390)(159,389)(160,388)
(161,387)(162,379)(163,385)(164,384)(165,383)(166,382)(167,381)(168,380)
(169,407)(170,413)(171,412)(172,411)(173,410)(174,409)(175,408)(176,414)
(177,420)(178,419)(179,418)(180,417)(181,416)(182,415)(183,393)(184,399)
(185,398)(186,397)(187,396)(188,395)(189,394)(190,400)(191,406)(192,405)
(193,404)(194,403)(195,402)(196,401)(197,435)(198,441)(199,440)(200,439)
(201,438)(202,437)(203,436)(204,442)(205,448)(206,447)(207,446)(208,445)
(209,444)(210,443)(211,421)(212,427)(213,426)(214,425)(215,424)(216,423)
(217,422)(218,428)(219,434)(220,433)(221,432)(222,431)(223,430)(224,429);;
s1 := (  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 23)( 16, 22)
( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 30)( 31, 35)( 32, 34)
( 36, 37)( 38, 42)( 39, 41)( 43, 51)( 44, 50)( 45, 56)( 46, 55)( 47, 54)
( 48, 53)( 49, 52)( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 73)( 64, 79)( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)( 70, 80)
( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)( 92,107)
( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)(113,142)(114,141)
(115,147)(116,146)(117,145)(118,144)(119,143)(120,149)(121,148)(122,154)
(123,153)(124,152)(125,151)(126,150)(127,163)(128,162)(129,168)(130,167)
(131,166)(132,165)(133,164)(134,156)(135,155)(136,161)(137,160)(138,159)
(139,158)(140,157)(169,212)(170,211)(171,217)(172,216)(173,215)(174,214)
(175,213)(176,219)(177,218)(178,224)(179,223)(180,222)(181,221)(182,220)
(183,198)(184,197)(185,203)(186,202)(187,201)(188,200)(189,199)(190,205)
(191,204)(192,210)(193,209)(194,208)(195,207)(196,206)(225,282)(226,281)
(227,287)(228,286)(229,285)(230,284)(231,283)(232,289)(233,288)(234,294)
(235,293)(236,292)(237,291)(238,290)(239,303)(240,302)(241,308)(242,307)
(243,306)(244,305)(245,304)(246,296)(247,295)(248,301)(249,300)(250,299)
(251,298)(252,297)(253,310)(254,309)(255,315)(256,314)(257,313)(258,312)
(259,311)(260,317)(261,316)(262,322)(263,321)(264,320)(265,319)(266,318)
(267,331)(268,330)(269,336)(270,335)(271,334)(272,333)(273,332)(274,324)
(275,323)(276,329)(277,328)(278,327)(279,326)(280,325)(337,422)(338,421)
(339,427)(340,426)(341,425)(342,424)(343,423)(344,429)(345,428)(346,434)
(347,433)(348,432)(349,431)(350,430)(351,443)(352,442)(353,448)(354,447)
(355,446)(356,445)(357,444)(358,436)(359,435)(360,441)(361,440)(362,439)
(363,438)(364,437)(365,394)(366,393)(367,399)(368,398)(369,397)(370,396)
(371,395)(372,401)(373,400)(374,406)(375,405)(376,404)(377,403)(378,402)
(379,415)(380,414)(381,420)(382,419)(383,418)(384,417)(385,416)(386,408)
(387,407)(388,413)(389,412)(390,411)(391,410)(392,409);;
s2 := (  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)(  8,120)
(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)( 16,128)
( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)( 24,136)
( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)( 32,144)
( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)( 40,152)
( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)( 48,160)
( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)( 56,168)
( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)( 64,176)
( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)( 72,184)
( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)( 80,192)
( 81,193)( 82,194)( 83,195)( 84,196)( 85,197)( 86,198)( 87,199)( 88,200)
( 89,201)( 90,202)( 91,203)( 92,204)( 93,205)( 94,206)( 95,207)( 96,208)
( 97,209)( 98,210)( 99,211)(100,212)(101,213)(102,214)(103,215)(104,216)
(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)(112,224)
(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)(232,344)
(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)(240,352)
(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)(248,360)
(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)(256,368)
(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)(264,376)
(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)(272,384)
(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)(280,392)
(281,393)(282,394)(283,395)(284,396)(285,397)(286,398)(287,399)(288,400)
(289,401)(290,402)(291,403)(292,404)(293,405)(294,406)(295,407)(296,408)
(297,409)(298,410)(299,411)(300,412)(301,413)(302,414)(303,415)(304,416)
(305,417)(306,418)(307,419)(308,420)(309,421)(310,422)(311,423)(312,424)
(313,425)(314,426)(315,427)(316,428)(317,429)(318,430)(319,431)(320,432)
(321,433)(322,434)(323,435)(324,436)(325,437)(326,438)(327,439)(328,440)
(329,441)(330,442)(331,443)(332,444)(333,445)(334,446)(335,447)(336,448);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(448)!(  1,225)(  2,231)(  3,230)(  4,229)(  5,228)(  6,227)(  7,226)
(  8,232)(  9,238)( 10,237)( 11,236)( 12,235)( 13,234)( 14,233)( 15,246)
( 16,252)( 17,251)( 18,250)( 19,249)( 20,248)( 21,247)( 22,239)( 23,245)
( 24,244)( 25,243)( 26,242)( 27,241)( 28,240)( 29,253)( 30,259)( 31,258)
( 32,257)( 33,256)( 34,255)( 35,254)( 36,260)( 37,266)( 38,265)( 39,264)
( 40,263)( 41,262)( 42,261)( 43,274)( 44,280)( 45,279)( 46,278)( 47,277)
( 48,276)( 49,275)( 50,267)( 51,273)( 52,272)( 53,271)( 54,270)( 55,269)
( 56,268)( 57,295)( 58,301)( 59,300)( 60,299)( 61,298)( 62,297)( 63,296)
( 64,302)( 65,308)( 66,307)( 67,306)( 68,305)( 69,304)( 70,303)( 71,281)
( 72,287)( 73,286)( 74,285)( 75,284)( 76,283)( 77,282)( 78,288)( 79,294)
( 80,293)( 81,292)( 82,291)( 83,290)( 84,289)( 85,323)( 86,329)( 87,328)
( 88,327)( 89,326)( 90,325)( 91,324)( 92,330)( 93,336)( 94,335)( 95,334)
( 96,333)( 97,332)( 98,331)( 99,309)(100,315)(101,314)(102,313)(103,312)
(104,311)(105,310)(106,316)(107,322)(108,321)(109,320)(110,319)(111,318)
(112,317)(113,337)(114,343)(115,342)(116,341)(117,340)(118,339)(119,338)
(120,344)(121,350)(122,349)(123,348)(124,347)(125,346)(126,345)(127,358)
(128,364)(129,363)(130,362)(131,361)(132,360)(133,359)(134,351)(135,357)
(136,356)(137,355)(138,354)(139,353)(140,352)(141,365)(142,371)(143,370)
(144,369)(145,368)(146,367)(147,366)(148,372)(149,378)(150,377)(151,376)
(152,375)(153,374)(154,373)(155,386)(156,392)(157,391)(158,390)(159,389)
(160,388)(161,387)(162,379)(163,385)(164,384)(165,383)(166,382)(167,381)
(168,380)(169,407)(170,413)(171,412)(172,411)(173,410)(174,409)(175,408)
(176,414)(177,420)(178,419)(179,418)(180,417)(181,416)(182,415)(183,393)
(184,399)(185,398)(186,397)(187,396)(188,395)(189,394)(190,400)(191,406)
(192,405)(193,404)(194,403)(195,402)(196,401)(197,435)(198,441)(199,440)
(200,439)(201,438)(202,437)(203,436)(204,442)(205,448)(206,447)(207,446)
(208,445)(209,444)(210,443)(211,421)(212,427)(213,426)(214,425)(215,424)
(216,423)(217,422)(218,428)(219,434)(220,433)(221,432)(222,431)(223,430)
(224,429);
s1 := Sym(448)!(  1,  2)(  3,  7)(  4,  6)(  8,  9)( 10, 14)( 11, 13)( 15, 23)
( 16, 22)( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 29, 30)( 31, 35)
( 32, 34)( 36, 37)( 38, 42)( 39, 41)( 43, 51)( 44, 50)( 45, 56)( 46, 55)
( 47, 54)( 48, 53)( 49, 52)( 57, 72)( 58, 71)( 59, 77)( 60, 76)( 61, 75)
( 62, 74)( 63, 73)( 64, 79)( 65, 78)( 66, 84)( 67, 83)( 68, 82)( 69, 81)
( 70, 80)( 85,100)( 86, 99)( 87,105)( 88,104)( 89,103)( 90,102)( 91,101)
( 92,107)( 93,106)( 94,112)( 95,111)( 96,110)( 97,109)( 98,108)(113,142)
(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,149)(121,148)
(122,154)(123,153)(124,152)(125,151)(126,150)(127,163)(128,162)(129,168)
(130,167)(131,166)(132,165)(133,164)(134,156)(135,155)(136,161)(137,160)
(138,159)(139,158)(140,157)(169,212)(170,211)(171,217)(172,216)(173,215)
(174,214)(175,213)(176,219)(177,218)(178,224)(179,223)(180,222)(181,221)
(182,220)(183,198)(184,197)(185,203)(186,202)(187,201)(188,200)(189,199)
(190,205)(191,204)(192,210)(193,209)(194,208)(195,207)(196,206)(225,282)
(226,281)(227,287)(228,286)(229,285)(230,284)(231,283)(232,289)(233,288)
(234,294)(235,293)(236,292)(237,291)(238,290)(239,303)(240,302)(241,308)
(242,307)(243,306)(244,305)(245,304)(246,296)(247,295)(248,301)(249,300)
(250,299)(251,298)(252,297)(253,310)(254,309)(255,315)(256,314)(257,313)
(258,312)(259,311)(260,317)(261,316)(262,322)(263,321)(264,320)(265,319)
(266,318)(267,331)(268,330)(269,336)(270,335)(271,334)(272,333)(273,332)
(274,324)(275,323)(276,329)(277,328)(278,327)(279,326)(280,325)(337,422)
(338,421)(339,427)(340,426)(341,425)(342,424)(343,423)(344,429)(345,428)
(346,434)(347,433)(348,432)(349,431)(350,430)(351,443)(352,442)(353,448)
(354,447)(355,446)(356,445)(357,444)(358,436)(359,435)(360,441)(361,440)
(362,439)(363,438)(364,437)(365,394)(366,393)(367,399)(368,398)(369,397)
(370,396)(371,395)(372,401)(373,400)(374,406)(375,405)(376,404)(377,403)
(378,402)(379,415)(380,414)(381,420)(382,419)(383,418)(384,417)(385,416)
(386,408)(387,407)(388,413)(389,412)(390,411)(391,410)(392,409);
s2 := Sym(448)!(  1,113)(  2,114)(  3,115)(  4,116)(  5,117)(  6,118)(  7,119)
(  8,120)(  9,121)( 10,122)( 11,123)( 12,124)( 13,125)( 14,126)( 15,127)
( 16,128)( 17,129)( 18,130)( 19,131)( 20,132)( 21,133)( 22,134)( 23,135)
( 24,136)( 25,137)( 26,138)( 27,139)( 28,140)( 29,141)( 30,142)( 31,143)
( 32,144)( 33,145)( 34,146)( 35,147)( 36,148)( 37,149)( 38,150)( 39,151)
( 40,152)( 41,153)( 42,154)( 43,155)( 44,156)( 45,157)( 46,158)( 47,159)
( 48,160)( 49,161)( 50,162)( 51,163)( 52,164)( 53,165)( 54,166)( 55,167)
( 56,168)( 57,169)( 58,170)( 59,171)( 60,172)( 61,173)( 62,174)( 63,175)
( 64,176)( 65,177)( 66,178)( 67,179)( 68,180)( 69,181)( 70,182)( 71,183)
( 72,184)( 73,185)( 74,186)( 75,187)( 76,188)( 77,189)( 78,190)( 79,191)
( 80,192)( 81,193)( 82,194)( 83,195)( 84,196)( 85,197)( 86,198)( 87,199)
( 88,200)( 89,201)( 90,202)( 91,203)( 92,204)( 93,205)( 94,206)( 95,207)
( 96,208)( 97,209)( 98,210)( 99,211)(100,212)(101,213)(102,214)(103,215)
(104,216)(105,217)(106,218)(107,219)(108,220)(109,221)(110,222)(111,223)
(112,224)(225,337)(226,338)(227,339)(228,340)(229,341)(230,342)(231,343)
(232,344)(233,345)(234,346)(235,347)(236,348)(237,349)(238,350)(239,351)
(240,352)(241,353)(242,354)(243,355)(244,356)(245,357)(246,358)(247,359)
(248,360)(249,361)(250,362)(251,363)(252,364)(253,365)(254,366)(255,367)
(256,368)(257,369)(258,370)(259,371)(260,372)(261,373)(262,374)(263,375)
(264,376)(265,377)(266,378)(267,379)(268,380)(269,381)(270,382)(271,383)
(272,384)(273,385)(274,386)(275,387)(276,388)(277,389)(278,390)(279,391)
(280,392)(281,393)(282,394)(283,395)(284,396)(285,397)(286,398)(287,399)
(288,400)(289,401)(290,402)(291,403)(292,404)(293,405)(294,406)(295,407)
(296,408)(297,409)(298,410)(299,411)(300,412)(301,413)(302,414)(303,415)
(304,416)(305,417)(306,418)(307,419)(308,420)(309,421)(310,422)(311,423)
(312,424)(313,425)(314,426)(315,427)(316,428)(317,429)(318,430)(319,431)
(320,432)(321,433)(322,434)(323,435)(324,436)(325,437)(326,438)(327,439)
(328,440)(329,441)(330,442)(331,443)(332,444)(333,445)(334,446)(335,447)
(336,448);
poly := sub<Sym(448)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope