Polytope of Type {10,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,9}*900
if this polytope has a name.
Group : SmallGroup(900,48)
Rank : 3
Schlafli Type : {10,9}
Number of vertices, edges, etc : 50, 225, 45
Order of s0s1s2 : 18
Order of s0s1s2s1 : 10
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,9,2} of size 1800
Vertex Figure Of :
   {2,10,9} of size 1800
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {10,3}*300
   25-fold quotients : {2,9}*36
   75-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,18}*1800a
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)( 82,100)
( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)( 90, 92)
(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)(111,116)
(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)(132,150)
(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)(140,142)
(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)(161,166)
(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)(182,200)
(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)(190,192)
(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)(211,216)
(212,220)(213,219)(214,218)(215,217);;
s1 := (  1, 81)(  2, 92)(  3, 78)(  4, 89)(  5,100)(  6, 76)(  7, 87)(  8, 98)
(  9, 84)( 10, 95)( 11, 96)( 12, 82)( 13, 93)( 14, 79)( 15, 90)( 16, 91)
( 17, 77)( 18, 88)( 19, 99)( 20, 85)( 21, 86)( 22, 97)( 23, 83)( 24, 94)
( 25, 80)( 26,131)( 27,142)( 28,128)( 29,139)( 30,150)( 31,126)( 32,137)
( 33,148)( 34,134)( 35,145)( 36,146)( 37,132)( 38,143)( 39,129)( 40,140)
( 41,141)( 42,127)( 43,138)( 44,149)( 45,135)( 46,136)( 47,147)( 48,133)
( 49,144)( 50,130)( 51,106)( 52,117)( 53,103)( 54,114)( 55,125)( 56,101)
( 57,112)( 58,123)( 59,109)( 60,120)( 61,121)( 62,107)( 63,118)( 64,104)
( 65,115)( 66,116)( 67,102)( 68,113)( 69,124)( 70,110)( 71,111)( 72,122)
( 73,108)( 74,119)( 75,105)(151,181)(152,192)(153,178)(154,189)(155,200)
(156,176)(157,187)(158,198)(159,184)(160,195)(161,196)(162,182)(163,193)
(164,179)(165,190)(166,191)(167,177)(168,188)(169,199)(170,185)(171,186)
(172,197)(173,183)(174,194)(175,180)(201,206)(202,217)(204,214)(205,225)
(207,212)(208,223)(210,220)(211,221)(213,218)(219,224);;
s2 := (  2, 16)(  3,  6)(  4, 21)(  5, 11)(  7, 18)(  9, 23)( 10, 13)( 12, 20)
( 14, 25)( 19, 22)( 26, 51)( 27, 66)( 28, 56)( 29, 71)( 30, 61)( 31, 53)
( 32, 68)( 33, 58)( 34, 73)( 35, 63)( 36, 55)( 37, 70)( 38, 60)( 39, 75)
( 40, 65)( 41, 52)( 42, 67)( 43, 57)( 44, 72)( 45, 62)( 46, 54)( 47, 69)
( 48, 59)( 49, 74)( 50, 64)( 76,176)( 77,191)( 78,181)( 79,196)( 80,186)
( 81,178)( 82,193)( 83,183)( 84,198)( 85,188)( 86,180)( 87,195)( 88,185)
( 89,200)( 90,190)( 91,177)( 92,192)( 93,182)( 94,197)( 95,187)( 96,179)
( 97,194)( 98,184)( 99,199)(100,189)(101,151)(102,166)(103,156)(104,171)
(105,161)(106,153)(107,168)(108,158)(109,173)(110,163)(111,155)(112,170)
(113,160)(114,175)(115,165)(116,152)(117,167)(118,157)(119,172)(120,162)
(121,154)(122,169)(123,159)(124,174)(125,164)(126,201)(127,216)(128,206)
(129,221)(130,211)(131,203)(132,218)(133,208)(134,223)(135,213)(136,205)
(137,220)(138,210)(139,225)(140,215)(141,202)(142,217)(143,207)(144,222)
(145,212)(146,204)(147,219)(148,209)(149,224)(150,214);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(225)!(  2,  5)(  3,  4)(  6, 21)(  7, 25)(  8, 24)(  9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 77, 80)( 78, 79)( 81, 96)
( 82,100)( 83, 99)( 84, 98)( 85, 97)( 86, 91)( 87, 95)( 88, 94)( 89, 93)
( 90, 92)(102,105)(103,104)(106,121)(107,125)(108,124)(109,123)(110,122)
(111,116)(112,120)(113,119)(114,118)(115,117)(127,130)(128,129)(131,146)
(132,150)(133,149)(134,148)(135,147)(136,141)(137,145)(138,144)(139,143)
(140,142)(152,155)(153,154)(156,171)(157,175)(158,174)(159,173)(160,172)
(161,166)(162,170)(163,169)(164,168)(165,167)(177,180)(178,179)(181,196)
(182,200)(183,199)(184,198)(185,197)(186,191)(187,195)(188,194)(189,193)
(190,192)(202,205)(203,204)(206,221)(207,225)(208,224)(209,223)(210,222)
(211,216)(212,220)(213,219)(214,218)(215,217);
s1 := Sym(225)!(  1, 81)(  2, 92)(  3, 78)(  4, 89)(  5,100)(  6, 76)(  7, 87)
(  8, 98)(  9, 84)( 10, 95)( 11, 96)( 12, 82)( 13, 93)( 14, 79)( 15, 90)
( 16, 91)( 17, 77)( 18, 88)( 19, 99)( 20, 85)( 21, 86)( 22, 97)( 23, 83)
( 24, 94)( 25, 80)( 26,131)( 27,142)( 28,128)( 29,139)( 30,150)( 31,126)
( 32,137)( 33,148)( 34,134)( 35,145)( 36,146)( 37,132)( 38,143)( 39,129)
( 40,140)( 41,141)( 42,127)( 43,138)( 44,149)( 45,135)( 46,136)( 47,147)
( 48,133)( 49,144)( 50,130)( 51,106)( 52,117)( 53,103)( 54,114)( 55,125)
( 56,101)( 57,112)( 58,123)( 59,109)( 60,120)( 61,121)( 62,107)( 63,118)
( 64,104)( 65,115)( 66,116)( 67,102)( 68,113)( 69,124)( 70,110)( 71,111)
( 72,122)( 73,108)( 74,119)( 75,105)(151,181)(152,192)(153,178)(154,189)
(155,200)(156,176)(157,187)(158,198)(159,184)(160,195)(161,196)(162,182)
(163,193)(164,179)(165,190)(166,191)(167,177)(168,188)(169,199)(170,185)
(171,186)(172,197)(173,183)(174,194)(175,180)(201,206)(202,217)(204,214)
(205,225)(207,212)(208,223)(210,220)(211,221)(213,218)(219,224);
s2 := Sym(225)!(  2, 16)(  3,  6)(  4, 21)(  5, 11)(  7, 18)(  9, 23)( 10, 13)
( 12, 20)( 14, 25)( 19, 22)( 26, 51)( 27, 66)( 28, 56)( 29, 71)( 30, 61)
( 31, 53)( 32, 68)( 33, 58)( 34, 73)( 35, 63)( 36, 55)( 37, 70)( 38, 60)
( 39, 75)( 40, 65)( 41, 52)( 42, 67)( 43, 57)( 44, 72)( 45, 62)( 46, 54)
( 47, 69)( 48, 59)( 49, 74)( 50, 64)( 76,176)( 77,191)( 78,181)( 79,196)
( 80,186)( 81,178)( 82,193)( 83,183)( 84,198)( 85,188)( 86,180)( 87,195)
( 88,185)( 89,200)( 90,190)( 91,177)( 92,192)( 93,182)( 94,197)( 95,187)
( 96,179)( 97,194)( 98,184)( 99,199)(100,189)(101,151)(102,166)(103,156)
(104,171)(105,161)(106,153)(107,168)(108,158)(109,173)(110,163)(111,155)
(112,170)(113,160)(114,175)(115,165)(116,152)(117,167)(118,157)(119,172)
(120,162)(121,154)(122,169)(123,159)(124,174)(125,164)(126,201)(127,216)
(128,206)(129,221)(130,211)(131,203)(132,218)(133,208)(134,223)(135,213)
(136,205)(137,220)(138,210)(139,225)(140,215)(141,202)(142,217)(143,207)
(144,222)(145,212)(146,204)(147,219)(148,209)(149,224)(150,214);
poly := sub<Sym(225)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope