Polytope of Type {12,2,19}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,2,19}*912
if this polytope has a name.
Group : SmallGroup(912,147)
Rank : 4
Schlafli Type : {12,2,19}
Number of vertices, edges, etc : 12, 12, 19, 19
Order of s0s1s2s3 : 228
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,2,19,2} of size 1824
Vertex Figure Of :
   {2,12,2,19} of size 1824
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,2,19}*456
   3-fold quotients : {4,2,19}*304
   4-fold quotients : {3,2,19}*228
   6-fold quotients : {2,2,19}*152
Covers (Minimal Covers in Boldface) :
   2-fold covers : {24,2,19}*1824, {12,2,38}*1824
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);;
s2 := (14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);;
s3 := (13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(31)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);
s1 := Sym(31)!( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);
s2 := Sym(31)!(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);
s3 := Sym(31)!(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);
poly := sub<Sym(31)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope