Polytope of Type {12,2,38}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,2,38}*1824
if this polytope has a name.
Group : SmallGroup(1824,1131)
Rank : 4
Schlafli Type : {12,2,38}
Number of vertices, edges, etc : 12, 12, 38, 38
Order of s0s1s2s3 : 228
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,2,19}*912, {6,2,38}*912
   3-fold quotients : {4,2,38}*608
   4-fold quotients : {3,2,38}*456, {6,2,19}*456
   6-fold quotients : {4,2,19}*304, {2,2,38}*304
   8-fold quotients : {3,2,19}*228
   12-fold quotients : {2,2,19}*152
   19-fold quotients : {12,2,2}*96
   38-fold quotients : {6,2,2}*48
   57-fold quotients : {4,2,2}*32
   76-fold quotients : {3,2,2}*24
   114-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);;
s1 := ( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);;
s2 := (15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)
(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50);;
s3 := (13,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,33)(30,31)
(32,37)(34,35)(36,41)(38,39)(40,45)(42,43)(44,49)(46,47)(48,50);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12);
s1 := Sym(50)!( 1, 7)( 2, 4)( 3,11)( 5, 8)( 6, 9)(10,12);
s2 := Sym(50)!(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)
(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50);
s3 := Sym(50)!(13,17)(14,15)(16,21)(18,19)(20,25)(22,23)(24,29)(26,27)(28,33)
(30,31)(32,37)(34,35)(36,41)(38,39)(40,45)(42,43)(44,49)(46,47)(48,50);
poly := sub<Sym(50)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope