Polytope of Type {12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10}*960d
if this polytope has a name.
Group : SmallGroup(960,10889)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 48, 240, 40
Order of s0s1s2 : 20
Order of s0s1s2s1 : 20
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {12,10,2} of size 1920
Vertex Figure Of :
   {2,12,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,5}*480, {6,10}*480c
   4-fold quotients : {3,10}*240, {6,5}*240b, {6,10}*240c, {6,10}*240d, {6,10}*240e, {6,10}*240f
   8-fold quotients : {3,5}*120, {3,10}*120a, {3,10}*120b, {6,5}*120b, {6,5}*120c
   16-fold quotients : {3,5}*60
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,10}*1920c, {12,20}*1920k, {12,20}*1920m
Permutation Representation (GAP) :
s0 := ( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)(12,34)
(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);;
s1 := ( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)(12,29)
(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)(36,38)
(37,47)(41,42)(45,48);;
s2 := ( 1,32)( 2,46)( 3,13)( 4,12)( 5,31)( 6,44)( 7,40)( 8,38)( 9,47)(10,36)
(11,29)(14,30)(15,35)(16,33)(17,34)(18,43)(19,28)(20,25)(21,23)(22,41)(24,48)
(26,37)(27,45)(39,42)(49,50);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)
(12,34)(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);
s1 := Sym(50)!( 1, 8)( 2, 4)( 3,33)( 5,24)( 6,25)( 7,21)( 9,16)(10,17)(11,32)
(12,29)(13,31)(14,34)(15,43)(18,27)(19,26)(20,46)(22,39)(23,40)(28,35)(30,44)
(36,38)(37,47)(41,42)(45,48);
s2 := Sym(50)!( 1,32)( 2,46)( 3,13)( 4,12)( 5,31)( 6,44)( 7,40)( 8,38)( 9,47)
(10,36)(11,29)(14,30)(15,35)(16,33)(17,34)(18,43)(19,28)(20,25)(21,23)(22,41)
(24,48)(26,37)(27,45)(39,42)(49,50);
poly := sub<Sym(50)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope