Polytope of Type {20,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,10}*960b
if this polytope has a name.
Group : SmallGroup(960,10889)
Rank : 3
Schlafli Type : {20,10}
Number of vertices, edges, etc : 48, 240, 24
Order of s0s1s2 : 12
Order of s0s1s2s1 : 12
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {20,10,2} of size 1920
Vertex Figure Of :
   {2,20,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {20,5}*480, {10,10}*480
   4-fold quotients : {5,10}*240, {10,5}*240, {10,10}*240a, {10,10}*240b, {10,10}*240c, {10,10}*240d
   8-fold quotients : {5,5}*120, {5,10}*120a, {5,10}*120b, {10,5}*120a, {10,5}*120b
   16-fold quotients : {5,5}*60
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,10}*1920, {20,20}*1920b, {20,20}*1920d
Permutation Representation (GAP) :
s0 := ( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)(12,34)
(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);;
s1 := ( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)(12,22)
(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)(36,38)
(37,47)(41,44)(45,48);;
s2 := ( 1,33)( 2, 8)( 3,40)( 4,31)( 5,34)( 6,43)( 7,35)( 9,24)(10,25)(11,22)
(12,19)(13,23)(14,41)(15,21)(16,44)(17,28)(18,32)(20,46)(26,27)(29,39)(30,42)
(36,38)(37,47)(45,48)(49,50);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(50)!( 2,45)( 3,41)( 4,17)( 5,19)( 7,30)( 8,48)( 9,36)(10,47)(11,23)
(12,34)(13,22)(14,40)(15,39)(20,26)(21,29)(24,38)(25,37)(27,46)(28,31)(35,42);
s1 := Sym(50)!( 1, 4)( 2,13)( 3, 8)( 5,16)( 6,17)( 7,43)( 9,30)(10,35)(11,27)
(12,22)(14,24)(15,25)(18,19)(20,46)(21,28)(23,33)(26,29)(31,40)(32,39)(34,42)
(36,38)(37,47)(41,44)(45,48);
s2 := Sym(50)!( 1,33)( 2, 8)( 3,40)( 4,31)( 5,34)( 6,43)( 7,35)( 9,24)(10,25)
(11,22)(12,19)(13,23)(14,41)(15,21)(16,44)(17,28)(18,32)(20,46)(26,27)(29,39)
(30,42)(36,38)(37,47)(45,48)(49,50);
poly := sub<Sym(50)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope