Polytope of Type {4,30,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,30,2,2}*960c
if this polytope has a name.
Group : SmallGroup(960,11379)
Rank : 5
Schlafli Type : {4,30,2,2}
Number of vertices, edges, etc : 4, 60, 30, 2, 2
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,30,2,2,2} of size 1920
Vertex Figure Of :
   {2,4,30,2,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,15,2,2}*480
   5-fold quotients : {4,6,2,2}*192b
   10-fold quotients : {4,3,2,2}*96
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,30,2,4}*1920c, {4,30,2,2}*1920
Permutation Representation (GAP) :
s0 := (  1, 62)(  2, 61)(  3, 64)(  4, 63)(  5, 66)(  6, 65)(  7, 68)(  8, 67)
(  9, 70)( 10, 69)( 11, 72)( 12, 71)( 13, 74)( 14, 73)( 15, 76)( 16, 75)
( 17, 78)( 18, 77)( 19, 80)( 20, 79)( 21, 82)( 22, 81)( 23, 84)( 24, 83)
( 25, 86)( 26, 85)( 27, 88)( 28, 87)( 29, 90)( 30, 89)( 31, 92)( 32, 91)
( 33, 94)( 34, 93)( 35, 96)( 36, 95)( 37, 98)( 38, 97)( 39,100)( 40, 99)
( 41,102)( 42,101)( 43,104)( 44,103)( 45,106)( 46,105)( 47,108)( 48,107)
( 49,110)( 50,109)( 51,112)( 52,111)( 53,114)( 54,113)( 55,116)( 56,115)
( 57,118)( 58,117)( 59,120)( 60,119);;
s1 := (  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)( 11, 14)
( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)( 27, 58)
( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)( 35, 50)
( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)( 66, 79)
( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)( 82,103)
( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)( 90,115)
( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)( 98,107)
( 99,106)(100,108);;
s2 := (  1, 85)(  2, 86)(  3, 88)(  4, 87)(  5, 81)(  6, 82)(  7, 84)(  8, 83)
(  9, 97)( 10, 98)( 11,100)( 12, 99)( 13, 93)( 14, 94)( 15, 96)( 16, 95)
( 17, 89)( 18, 90)( 19, 92)( 20, 91)( 21, 65)( 22, 66)( 23, 68)( 24, 67)
( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 77)( 30, 78)( 31, 80)( 32, 79)
( 33, 73)( 34, 74)( 35, 76)( 36, 75)( 37, 69)( 38, 70)( 39, 72)( 40, 71)
( 41,105)( 42,106)( 43,108)( 44,107)( 45,101)( 46,102)( 47,104)( 48,103)
( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)( 56,115)
( 57,109)( 58,110)( 59,112)( 60,111);;
s3 := (121,122);;
s4 := (123,124);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(124)!(  1, 62)(  2, 61)(  3, 64)(  4, 63)(  5, 66)(  6, 65)(  7, 68)
(  8, 67)(  9, 70)( 10, 69)( 11, 72)( 12, 71)( 13, 74)( 14, 73)( 15, 76)
( 16, 75)( 17, 78)( 18, 77)( 19, 80)( 20, 79)( 21, 82)( 22, 81)( 23, 84)
( 24, 83)( 25, 86)( 26, 85)( 27, 88)( 28, 87)( 29, 90)( 30, 89)( 31, 92)
( 32, 91)( 33, 94)( 34, 93)( 35, 96)( 36, 95)( 37, 98)( 38, 97)( 39,100)
( 40, 99)( 41,102)( 42,101)( 43,104)( 44,103)( 45,106)( 46,105)( 47,108)
( 48,107)( 49,110)( 50,109)( 51,112)( 52,111)( 53,114)( 54,113)( 55,116)
( 56,115)( 57,118)( 58,117)( 59,120)( 60,119);
s1 := Sym(124)!(  2,  3)(  5, 17)(  6, 19)(  7, 18)(  8, 20)(  9, 13)( 10, 15)
( 11, 14)( 12, 16)( 21, 41)( 22, 43)( 23, 42)( 24, 44)( 25, 57)( 26, 59)
( 27, 58)( 28, 60)( 29, 53)( 30, 55)( 31, 54)( 32, 56)( 33, 49)( 34, 51)
( 35, 50)( 36, 52)( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 62, 63)( 65, 77)
( 66, 79)( 67, 78)( 68, 80)( 69, 73)( 70, 75)( 71, 74)( 72, 76)( 81,101)
( 82,103)( 83,102)( 84,104)( 85,117)( 86,119)( 87,118)( 88,120)( 89,113)
( 90,115)( 91,114)( 92,116)( 93,109)( 94,111)( 95,110)( 96,112)( 97,105)
( 98,107)( 99,106)(100,108);
s2 := Sym(124)!(  1, 85)(  2, 86)(  3, 88)(  4, 87)(  5, 81)(  6, 82)(  7, 84)
(  8, 83)(  9, 97)( 10, 98)( 11,100)( 12, 99)( 13, 93)( 14, 94)( 15, 96)
( 16, 95)( 17, 89)( 18, 90)( 19, 92)( 20, 91)( 21, 65)( 22, 66)( 23, 68)
( 24, 67)( 25, 61)( 26, 62)( 27, 64)( 28, 63)( 29, 77)( 30, 78)( 31, 80)
( 32, 79)( 33, 73)( 34, 74)( 35, 76)( 36, 75)( 37, 69)( 38, 70)( 39, 72)
( 40, 71)( 41,105)( 42,106)( 43,108)( 44,107)( 45,101)( 46,102)( 47,104)
( 48,103)( 49,117)( 50,118)( 51,120)( 52,119)( 53,113)( 54,114)( 55,116)
( 56,115)( 57,109)( 58,110)( 59,112)( 60,111);
s3 := Sym(124)!(121,122);
s4 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0 >; 
 

to this polytope