Polytope of Type {2,11,22}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,11,22}*968
if this polytope has a name.
Group : SmallGroup(968,39)
Rank : 4
Schlafli Type : {2,11,22}
Number of vertices, edges, etc : 2, 11, 121, 22
Order of s0s1s2s3 : 22
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,11,22,2} of size 1936
Vertex Figure Of :
   {2,2,11,22} of size 1936
Quotients (Maximal Quotients in Boldface) :
   11-fold quotients : {2,11,2}*88
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,22,22}*1936c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14,113)( 15,123)( 16,122)
( 17,121)( 18,120)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)( 24,114)
( 25,102)( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)( 32,106)
( 33,105)( 34,104)( 35,103)( 36, 91)( 37,101)( 38,100)( 39, 99)( 40, 98)
( 41, 97)( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 80)( 48, 90)
( 49, 89)( 50, 88)( 51, 87)( 52, 86)( 53, 85)( 54, 84)( 55, 83)( 56, 82)
( 57, 81)( 58, 69)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)
( 65, 73)( 66, 72)( 67, 71)( 68, 70);;
s2 := (  3, 15)(  4, 14)(  5, 24)(  6, 23)(  7, 22)(  8, 21)(  9, 20)( 10, 19)
( 11, 18)( 12, 17)( 13, 16)( 25,114)( 26,113)( 27,123)( 28,122)( 29,121)
( 30,120)( 31,119)( 32,118)( 33,117)( 34,116)( 35,115)( 36,103)( 37,102)
( 38,112)( 39,111)( 40,110)( 41,109)( 42,108)( 43,107)( 44,106)( 45,105)
( 46,104)( 47, 92)( 48, 91)( 49,101)( 50,100)( 51, 99)( 52, 98)( 53, 97)
( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 81)( 59, 80)( 60, 90)( 61, 89)
( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)( 68, 82)( 69, 70)
( 71, 79)( 72, 78)( 73, 77)( 74, 76);;
s3 := (  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)( 37, 46)
( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 48, 57)( 49, 56)( 50, 55)( 51, 54)
( 52, 53)( 59, 68)( 60, 67)( 61, 66)( 62, 65)( 63, 64)( 70, 79)( 71, 78)
( 72, 77)( 73, 76)( 74, 75)( 81, 90)( 82, 89)( 83, 88)( 84, 87)( 85, 86)
( 92,101)( 93,100)( 94, 99)( 95, 98)( 96, 97)(103,112)(104,111)(105,110)
(106,109)(107,108)(114,123)(115,122)(116,121)(117,120)(118,119);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(123)!(1,2);
s1 := Sym(123)!(  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 14,113)( 15,123)
( 16,122)( 17,121)( 18,120)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)
( 24,114)( 25,102)( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)
( 32,106)( 33,105)( 34,104)( 35,103)( 36, 91)( 37,101)( 38,100)( 39, 99)
( 40, 98)( 41, 97)( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 80)
( 48, 90)( 49, 89)( 50, 88)( 51, 87)( 52, 86)( 53, 85)( 54, 84)( 55, 83)
( 56, 82)( 57, 81)( 58, 69)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)
( 64, 74)( 65, 73)( 66, 72)( 67, 71)( 68, 70);
s2 := Sym(123)!(  3, 15)(  4, 14)(  5, 24)(  6, 23)(  7, 22)(  8, 21)(  9, 20)
( 10, 19)( 11, 18)( 12, 17)( 13, 16)( 25,114)( 26,113)( 27,123)( 28,122)
( 29,121)( 30,120)( 31,119)( 32,118)( 33,117)( 34,116)( 35,115)( 36,103)
( 37,102)( 38,112)( 39,111)( 40,110)( 41,109)( 42,108)( 43,107)( 44,106)
( 45,105)( 46,104)( 47, 92)( 48, 91)( 49,101)( 50,100)( 51, 99)( 52, 98)
( 53, 97)( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 81)( 59, 80)( 60, 90)
( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)( 68, 82)
( 69, 70)( 71, 79)( 72, 78)( 73, 77)( 74, 76);
s3 := Sym(123)!(  4, 13)(  5, 12)(  6, 11)(  7, 10)(  8,  9)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 26, 35)( 27, 34)( 28, 33)( 29, 32)( 30, 31)
( 37, 46)( 38, 45)( 39, 44)( 40, 43)( 41, 42)( 48, 57)( 49, 56)( 50, 55)
( 51, 54)( 52, 53)( 59, 68)( 60, 67)( 61, 66)( 62, 65)( 63, 64)( 70, 79)
( 71, 78)( 72, 77)( 73, 76)( 74, 75)( 81, 90)( 82, 89)( 83, 88)( 84, 87)
( 85, 86)( 92,101)( 93,100)( 94, 99)( 95, 98)( 96, 97)(103,112)(104,111)
(105,110)(106,109)(107,108)(114,123)(115,122)(116,121)(117,120)(118,119);
poly := sub<Sym(123)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope