Polytope of Type {11,22,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,22,2}*968
if this polytope has a name.
Group : SmallGroup(968,39)
Rank : 4
Schlafli Type : {11,22,2}
Number of vertices, edges, etc : 11, 121, 22, 2
Order of s0s1s2s3 : 22
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {11,22,2,2} of size 1936
Vertex Figure Of :
   {2,11,22,2} of size 1936
Quotients (Maximal Quotients in Boldface) :
   11-fold quotients : {11,2,2}*88
Covers (Minimal Covers in Boldface) :
   2-fold covers : {11,22,4}*1936, {22,22,2}*1936c
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,111)( 13,121)( 14,120)
( 15,119)( 16,118)( 17,117)( 18,116)( 19,115)( 20,114)( 21,113)( 22,112)
( 23,100)( 24,110)( 25,109)( 26,108)( 27,107)( 28,106)( 29,105)( 30,104)
( 31,103)( 32,102)( 33,101)( 34, 89)( 35, 99)( 36, 98)( 37, 97)( 38, 96)
( 39, 95)( 40, 94)( 41, 93)( 42, 92)( 43, 91)( 44, 90)( 45, 78)( 46, 88)
( 47, 87)( 48, 86)( 49, 85)( 50, 84)( 51, 83)( 52, 82)( 53, 81)( 54, 80)
( 55, 79)( 56, 67)( 57, 77)( 58, 76)( 59, 75)( 60, 74)( 61, 73)( 62, 72)
( 63, 71)( 64, 70)( 65, 69)( 66, 68);;
s1 := (  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 16)( 10, 15)( 11, 14)( 23,112)( 24,111)( 25,121)( 26,120)( 27,119)
( 28,118)( 29,117)( 30,116)( 31,115)( 32,114)( 33,113)( 34,101)( 35,100)
( 36,110)( 37,109)( 38,108)( 39,107)( 40,106)( 41,105)( 42,104)( 43,103)
( 44,102)( 45, 90)( 46, 89)( 47, 99)( 48, 98)( 49, 97)( 50, 96)( 51, 95)
( 52, 94)( 53, 93)( 54, 92)( 55, 91)( 56, 79)( 57, 78)( 58, 88)( 59, 87)
( 60, 86)( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 80)( 67, 68)
( 69, 77)( 70, 76)( 71, 75)( 72, 74);;
s2 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)( 15, 20)
( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)( 35, 44)
( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)( 49, 52)
( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)( 69, 76)
( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)( 83, 84)
( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)(103,108)
(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117);;
s3 := (122,123);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(123)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12,111)( 13,121)
( 14,120)( 15,119)( 16,118)( 17,117)( 18,116)( 19,115)( 20,114)( 21,113)
( 22,112)( 23,100)( 24,110)( 25,109)( 26,108)( 27,107)( 28,106)( 29,105)
( 30,104)( 31,103)( 32,102)( 33,101)( 34, 89)( 35, 99)( 36, 98)( 37, 97)
( 38, 96)( 39, 95)( 40, 94)( 41, 93)( 42, 92)( 43, 91)( 44, 90)( 45, 78)
( 46, 88)( 47, 87)( 48, 86)( 49, 85)( 50, 84)( 51, 83)( 52, 82)( 53, 81)
( 54, 80)( 55, 79)( 56, 67)( 57, 77)( 58, 76)( 59, 75)( 60, 74)( 61, 73)
( 62, 72)( 63, 71)( 64, 70)( 65, 69)( 66, 68);
s1 := Sym(123)!(  1, 13)(  2, 12)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)
(  8, 17)(  9, 16)( 10, 15)( 11, 14)( 23,112)( 24,111)( 25,121)( 26,120)
( 27,119)( 28,118)( 29,117)( 30,116)( 31,115)( 32,114)( 33,113)( 34,101)
( 35,100)( 36,110)( 37,109)( 38,108)( 39,107)( 40,106)( 41,105)( 42,104)
( 43,103)( 44,102)( 45, 90)( 46, 89)( 47, 99)( 48, 98)( 49, 97)( 50, 96)
( 51, 95)( 52, 94)( 53, 93)( 54, 92)( 55, 91)( 56, 79)( 57, 78)( 58, 88)
( 59, 87)( 60, 86)( 61, 85)( 62, 84)( 63, 83)( 64, 82)( 65, 81)( 66, 80)
( 67, 68)( 69, 77)( 70, 76)( 71, 75)( 72, 74);
s2 := Sym(123)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 13, 22)( 14, 21)
( 15, 20)( 16, 19)( 17, 18)( 24, 33)( 25, 32)( 26, 31)( 27, 30)( 28, 29)
( 35, 44)( 36, 43)( 37, 42)( 38, 41)( 39, 40)( 46, 55)( 47, 54)( 48, 53)
( 49, 52)( 50, 51)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)( 68, 77)
( 69, 76)( 70, 75)( 71, 74)( 72, 73)( 79, 88)( 80, 87)( 81, 86)( 82, 85)
( 83, 84)( 90, 99)( 91, 98)( 92, 97)( 93, 96)( 94, 95)(101,110)(102,109)
(103,108)(104,107)(105,106)(112,121)(113,120)(114,119)(115,118)(116,117);
s3 := Sym(123)!(122,123);
poly := sub<Sym(123)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope