include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,18}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,18}*972f
if this polytope has a name.
Group : SmallGroup(972,109)
Rank : 3
Schlafli Type : {18,18}
Number of vertices, edges, etc : 27, 243, 27
Order of s0s1s2 : 9
Order of s0s1s2s1 : 6
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{18,18,2} of size 1944
Vertex Figure Of :
{2,18,18} of size 1944
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {18,6}*324a, {6,18}*324b
9-fold quotients : {6,6}*108
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,18}*1944s
Permutation Representation (GAP) :
s0 := ( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)( 14, 27)
( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)( 37, 46)
( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)( 45, 50)
( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)( 68, 81)
( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)( 85,188)
( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)( 93,174)
( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)(101,164)
(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)(109,208)
(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)(117,212)
(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)(125,202)
(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)(133,195)
(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)(141,241)
(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)(149,234)
(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)(157,224)
(158,225)(159,223)(160,222)(161,220)(162,221);;
s1 := ( 1, 82)( 2, 84)( 3, 83)( 4, 85)( 5, 87)( 6, 86)( 7, 88)( 8, 90)
( 9, 89)( 10,100)( 11,102)( 12,101)( 13,103)( 14,105)( 15,104)( 16,106)
( 17,108)( 18,107)( 19, 91)( 20, 93)( 21, 92)( 22, 94)( 23, 96)( 24, 95)
( 25, 97)( 26, 99)( 27, 98)( 28,144)( 29,143)( 30,142)( 31,138)( 32,137)
( 33,136)( 34,141)( 35,140)( 36,139)( 37,162)( 38,161)( 39,160)( 40,156)
( 41,155)( 42,154)( 43,159)( 44,158)( 45,157)( 46,153)( 47,152)( 48,151)
( 49,147)( 50,146)( 51,145)( 52,150)( 53,149)( 54,148)( 55,114)( 56,113)
( 57,112)( 58,117)( 59,116)( 60,115)( 61,111)( 62,110)( 63,109)( 64,132)
( 65,131)( 66,130)( 67,135)( 68,134)( 69,133)( 70,129)( 71,128)( 72,127)
( 73,123)( 74,122)( 75,121)( 76,126)( 77,125)( 78,124)( 79,120)( 80,119)
( 81,118)(163,181)(164,183)(165,182)(166,184)(167,186)(168,185)(169,187)
(170,189)(171,188)(173,174)(176,177)(179,180)(190,243)(191,242)(192,241)
(193,237)(194,236)(195,235)(196,240)(197,239)(198,238)(199,234)(200,233)
(201,232)(202,228)(203,227)(204,226)(205,231)(206,230)(207,229)(208,225)
(209,224)(210,223)(211,219)(212,218)(213,217)(214,222)(215,221)(216,220);;
s2 := ( 1, 28)( 2, 30)( 3, 29)( 4, 34)( 5, 36)( 6, 35)( 7, 31)( 8, 33)
( 9, 32)( 10, 37)( 11, 39)( 12, 38)( 13, 43)( 14, 45)( 15, 44)( 16, 40)
( 17, 42)( 18, 41)( 19, 46)( 20, 48)( 21, 47)( 22, 52)( 23, 54)( 24, 53)
( 25, 49)( 26, 51)( 27, 50)( 55, 57)( 58, 63)( 59, 62)( 60, 61)( 64, 66)
( 67, 72)( 68, 71)( 69, 70)( 73, 75)( 76, 81)( 77, 80)( 78, 79)( 82,109)
( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)( 90,113)
( 91,118)( 92,120)( 93,119)( 94,124)( 95,126)( 96,125)( 97,121)( 98,123)
( 99,122)(100,127)(101,129)(102,128)(103,133)(104,135)(105,134)(106,130)
(107,132)(108,131)(136,138)(139,144)(140,143)(141,142)(145,147)(148,153)
(149,152)(150,151)(154,156)(157,162)(158,161)(159,160)(163,190)(164,192)
(165,191)(166,196)(167,198)(168,197)(169,193)(170,195)(171,194)(172,199)
(173,201)(174,200)(175,205)(176,207)(177,206)(178,202)(179,204)(180,203)
(181,208)(182,210)(183,209)(184,214)(185,216)(186,215)(187,211)(188,213)
(189,212)(217,219)(220,225)(221,224)(222,223)(226,228)(229,234)(230,233)
(231,232)(235,237)(238,243)(239,242)(240,241);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(243)!( 4, 8)( 5, 9)( 6, 7)( 10, 19)( 11, 20)( 12, 21)( 13, 26)
( 14, 27)( 15, 25)( 16, 24)( 17, 22)( 18, 23)( 31, 35)( 32, 36)( 33, 34)
( 37, 46)( 38, 47)( 39, 48)( 40, 53)( 41, 54)( 42, 52)( 43, 51)( 44, 49)
( 45, 50)( 58, 62)( 59, 63)( 60, 61)( 64, 73)( 65, 74)( 66, 75)( 67, 80)
( 68, 81)( 69, 79)( 70, 78)( 71, 76)( 72, 77)( 82,181)( 83,182)( 84,183)
( 85,188)( 86,189)( 87,187)( 88,186)( 89,184)( 90,185)( 91,172)( 92,173)
( 93,174)( 94,179)( 95,180)( 96,178)( 97,177)( 98,175)( 99,176)(100,163)
(101,164)(102,165)(103,170)(104,171)(105,169)(106,168)(107,166)(108,167)
(109,208)(110,209)(111,210)(112,215)(113,216)(114,214)(115,213)(116,211)
(117,212)(118,199)(119,200)(120,201)(121,206)(122,207)(123,205)(124,204)
(125,202)(126,203)(127,190)(128,191)(129,192)(130,197)(131,198)(132,196)
(133,195)(134,193)(135,194)(136,235)(137,236)(138,237)(139,242)(140,243)
(141,241)(142,240)(143,238)(144,239)(145,226)(146,227)(147,228)(148,233)
(149,234)(150,232)(151,231)(152,229)(153,230)(154,217)(155,218)(156,219)
(157,224)(158,225)(159,223)(160,222)(161,220)(162,221);
s1 := Sym(243)!( 1, 82)( 2, 84)( 3, 83)( 4, 85)( 5, 87)( 6, 86)( 7, 88)
( 8, 90)( 9, 89)( 10,100)( 11,102)( 12,101)( 13,103)( 14,105)( 15,104)
( 16,106)( 17,108)( 18,107)( 19, 91)( 20, 93)( 21, 92)( 22, 94)( 23, 96)
( 24, 95)( 25, 97)( 26, 99)( 27, 98)( 28,144)( 29,143)( 30,142)( 31,138)
( 32,137)( 33,136)( 34,141)( 35,140)( 36,139)( 37,162)( 38,161)( 39,160)
( 40,156)( 41,155)( 42,154)( 43,159)( 44,158)( 45,157)( 46,153)( 47,152)
( 48,151)( 49,147)( 50,146)( 51,145)( 52,150)( 53,149)( 54,148)( 55,114)
( 56,113)( 57,112)( 58,117)( 59,116)( 60,115)( 61,111)( 62,110)( 63,109)
( 64,132)( 65,131)( 66,130)( 67,135)( 68,134)( 69,133)( 70,129)( 71,128)
( 72,127)( 73,123)( 74,122)( 75,121)( 76,126)( 77,125)( 78,124)( 79,120)
( 80,119)( 81,118)(163,181)(164,183)(165,182)(166,184)(167,186)(168,185)
(169,187)(170,189)(171,188)(173,174)(176,177)(179,180)(190,243)(191,242)
(192,241)(193,237)(194,236)(195,235)(196,240)(197,239)(198,238)(199,234)
(200,233)(201,232)(202,228)(203,227)(204,226)(205,231)(206,230)(207,229)
(208,225)(209,224)(210,223)(211,219)(212,218)(213,217)(214,222)(215,221)
(216,220);
s2 := Sym(243)!( 1, 28)( 2, 30)( 3, 29)( 4, 34)( 5, 36)( 6, 35)( 7, 31)
( 8, 33)( 9, 32)( 10, 37)( 11, 39)( 12, 38)( 13, 43)( 14, 45)( 15, 44)
( 16, 40)( 17, 42)( 18, 41)( 19, 46)( 20, 48)( 21, 47)( 22, 52)( 23, 54)
( 24, 53)( 25, 49)( 26, 51)( 27, 50)( 55, 57)( 58, 63)( 59, 62)( 60, 61)
( 64, 66)( 67, 72)( 68, 71)( 69, 70)( 73, 75)( 76, 81)( 77, 80)( 78, 79)
( 82,109)( 83,111)( 84,110)( 85,115)( 86,117)( 87,116)( 88,112)( 89,114)
( 90,113)( 91,118)( 92,120)( 93,119)( 94,124)( 95,126)( 96,125)( 97,121)
( 98,123)( 99,122)(100,127)(101,129)(102,128)(103,133)(104,135)(105,134)
(106,130)(107,132)(108,131)(136,138)(139,144)(140,143)(141,142)(145,147)
(148,153)(149,152)(150,151)(154,156)(157,162)(158,161)(159,160)(163,190)
(164,192)(165,191)(166,196)(167,198)(168,197)(169,193)(170,195)(171,194)
(172,199)(173,201)(174,200)(175,205)(176,207)(177,206)(178,202)(179,204)
(180,203)(181,208)(182,210)(183,209)(184,214)(185,216)(186,215)(187,211)
(188,213)(189,212)(217,219)(220,225)(221,224)(222,223)(226,228)(229,234)
(230,233)(231,232)(235,237)(238,243)(239,242)(240,241);
poly := sub<Sym(243)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2 >;
References : None.
to this polytope