Chiral Polytope of Type {36,6}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{36,6}*1296a with group SmallGroup(1296,812) = C32 ⋊ (((C9 x C4) ⋊ C2) x C2)of order 1296
Rank : 3
Schlafli Type : {36,6}
Rotation Group : SmallGroup(216,54) = ((C9 x C4) ⋊ C2) ⋊ C3 of order 216
Number of vertices, edges, etc : 36, 108, 6
If Aut({36,6}*1296a)=<s0, s1, s2>, then this chiral polytope is ({36,6}*1296a)/N, where
N=<s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s1*s2> of order 3
Facet : (Regular) 36-gon
Vertex Figure : (Regular) 6-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig2^-1*sig1*sig1*sig2^-1, sig2*sig2*sig2*sig2*sig2*sig2, 
sig1^-1*sig2*sig1^-1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1*sig1^-1*sig2, sig1*sig1*sig1*sig1*sig1*sig1*sig2*sig1^-1*sig2*sig2*sig1^-1*sig1^-1*sig1^-1*sig2*sig1*sig1 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig2^-1*sig1*sig1*sig2^-1, 
sig2*sig2*sig2*sig2*sig2*sig2, sig1^-1*sig2*sig1^-1*sig2^-1*sig2^-1*sig1*sig2^-1*sig2^-1*sig1^-1*sig2, 
sig1*sig1*sig1*sig1*sig1*sig1*sig2*sig1^-1*sig2*sig2*sig1^-1*sig1^-1*sig1^-1*sig2*sig1*sig1 >;