Chiral Polytope of Type {6,3}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{6,3}*588 with group SmallGroup(588,35) = C72 ⋊ D6of order 588
Rank : 3
Schlafli Type : {6,3}
Rotation Group : SmallGroup(42,1) = C7 ⋊ C6 of order 42
Number of vertices, edges, etc : 14, 21, 7
If Aut({6,3}*588)=<s0, s1, s2>, then this chiral polytope is ({6,3}*588)/N, where
N=<s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s2*s1*s0*s1*s2> of order 7
Facet : (Regular) 6-gon
Vertex Figure : (Regular) 3-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig2*sig2*sig2, sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig1*sig1, 
sig1^-1*sig1^-1*sig1^-1*sig2*sig1^-1*sig2*sig1^-1*sig1^-1*sig2 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig2*sig2*sig2, sig1^-1*sig2^-1*sig1^-1*sig2^-1, 
sig1*sig1*sig1*sig1*sig1*sig1, sig1^-1*sig1^-1*sig1^-1*sig2*sig1^-1*sig2*sig1^-1*sig1^-1*sig2 >;