Chiral Polytope of Type {18,9}

This page is part of the Atlas of Small Chiral Polytopes
Regular Cover :{18,9}*972a with group SmallGroup(972,99) = (C3 x C9) ⋊ (D9 x C2)of order 972
Rank : 3
Schlafli Type : {18,9}
Rotation Group : SmallGroup(162,6) = (C9 ⋊ C9) ⋊ C2 of order 162
Number of vertices, edges, etc : 18, 81, 9
If Aut({18,9}*972a)=<s0, s1, s2>, then this chiral polytope is ({18,9}*972a)/N, where
N=<s0*s1*s0*s2*s1*s0*s2*s1*s2*s1*s0*s2*s1*s2*s1*s2> of order 3
Facet : (Regular) 18-gon
Vertex Figure : (Regular) 9-gon
Finitely Presented Group Representation of the Rotation Group(GAP) :
F := FreeGroup("sig1","sig2");;
sig1 := F.1;;  sig2 := F.2;;  
rels := [ sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig2^-1*sig1*sig1*sig2^-1*sig2^-1, 
sig1*sig1*sig1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig1*sig2^-1 ];;
rotpoly := F / rels;;
 
Finitely Presented Group Representation of the Rotation Group (Magma) :

rotpoly<sig1,sig2> := Group< sig1,sig2 | sig1^-1*sig2^-1*sig1^-1*sig2^-1, sig1*sig1*sig1*sig1*sig2^-1*sig1*sig1*sig2^-1*sig2^-1, 
sig1*sig1*sig1*sig2^-1*sig2^-1*sig2^-1*sig2^-1*sig1*sig2^-1 >;