include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {500}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {500}*1000
Also Known As : 500-gon, {500}. if this polytope has another name.
Group : SmallGroup(1000,6)
Rank : 2
Schlafli Type : {500}
Number of vertices, edges, etc : 500, 500
Order of s0s1 : 500
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{500,2} of size 2000
Vertex Figure Of :
{2,500} of size 2000
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {250}*500
4-fold quotients : {125}*250
5-fold quotients : {100}*200
10-fold quotients : {50}*100
20-fold quotients : {25}*50
25-fold quotients : {20}*40
50-fold quotients : {10}*20
100-fold quotients : {5}*10
125-fold quotients : {4}*8
250-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {1000}*2000
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 25)( 7, 24)( 8, 23)( 9, 22)( 10, 21)( 11, 20)
( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 26,125)( 27,124)( 28,123)( 29,122)
( 30,121)( 31,120)( 32,119)( 33,118)( 34,117)( 35,116)( 36,115)( 37,114)
( 38,113)( 39,112)( 40,111)( 41,110)( 42,109)( 43,108)( 44,107)( 45,106)
( 46,105)( 47,104)( 48,103)( 49,102)( 50,101)( 51,100)( 52, 99)( 53, 98)
( 54, 97)( 55, 96)( 56, 95)( 57, 94)( 58, 93)( 59, 92)( 60, 91)( 61, 90)
( 62, 89)( 63, 88)( 64, 87)( 65, 86)( 66, 85)( 67, 84)( 68, 83)( 69, 82)
( 70, 81)( 71, 80)( 72, 79)( 73, 78)( 74, 77)( 75, 76)(127,130)(128,129)
(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)(138,143)
(139,142)(140,141)(151,250)(152,249)(153,248)(154,247)(155,246)(156,245)
(157,244)(158,243)(159,242)(160,241)(161,240)(162,239)(163,238)(164,237)
(165,236)(166,235)(167,234)(168,233)(169,232)(170,231)(171,230)(172,229)
(173,228)(174,227)(175,226)(176,225)(177,224)(178,223)(179,222)(180,221)
(181,220)(182,219)(183,218)(184,217)(185,216)(186,215)(187,214)(188,213)
(189,212)(190,211)(191,210)(192,209)(193,208)(194,207)(195,206)(196,205)
(197,204)(198,203)(199,202)(200,201)(251,376)(252,380)(253,379)(254,378)
(255,377)(256,400)(257,399)(258,398)(259,397)(260,396)(261,395)(262,394)
(263,393)(264,392)(265,391)(266,390)(267,389)(268,388)(269,387)(270,386)
(271,385)(272,384)(273,383)(274,382)(275,381)(276,500)(277,499)(278,498)
(279,497)(280,496)(281,495)(282,494)(283,493)(284,492)(285,491)(286,490)
(287,489)(288,488)(289,487)(290,486)(291,485)(292,484)(293,483)(294,482)
(295,481)(296,480)(297,479)(298,478)(299,477)(300,476)(301,475)(302,474)
(303,473)(304,472)(305,471)(306,470)(307,469)(308,468)(309,467)(310,466)
(311,465)(312,464)(313,463)(314,462)(315,461)(316,460)(317,459)(318,458)
(319,457)(320,456)(321,455)(322,454)(323,453)(324,452)(325,451)(326,450)
(327,449)(328,448)(329,447)(330,446)(331,445)(332,444)(333,443)(334,442)
(335,441)(336,440)(337,439)(338,438)(339,437)(340,436)(341,435)(342,434)
(343,433)(344,432)(345,431)(346,430)(347,429)(348,428)(349,427)(350,426)
(351,425)(352,424)(353,423)(354,422)(355,421)(356,420)(357,419)(358,418)
(359,417)(360,416)(361,415)(362,414)(363,413)(364,412)(365,411)(366,410)
(367,409)(368,408)(369,407)(370,406)(371,405)(372,404)(373,403)(374,402)
(375,401);;
s1 := ( 1,276)( 2,280)( 3,279)( 4,278)( 5,277)( 6,300)( 7,299)( 8,298)
( 9,297)( 10,296)( 11,295)( 12,294)( 13,293)( 14,292)( 15,291)( 16,290)
( 17,289)( 18,288)( 19,287)( 20,286)( 21,285)( 22,284)( 23,283)( 24,282)
( 25,281)( 26,251)( 27,255)( 28,254)( 29,253)( 30,252)( 31,275)( 32,274)
( 33,273)( 34,272)( 35,271)( 36,270)( 37,269)( 38,268)( 39,267)( 40,266)
( 41,265)( 42,264)( 43,263)( 44,262)( 45,261)( 46,260)( 47,259)( 48,258)
( 49,257)( 50,256)( 51,375)( 52,374)( 53,373)( 54,372)( 55,371)( 56,370)
( 57,369)( 58,368)( 59,367)( 60,366)( 61,365)( 62,364)( 63,363)( 64,362)
( 65,361)( 66,360)( 67,359)( 68,358)( 69,357)( 70,356)( 71,355)( 72,354)
( 73,353)( 74,352)( 75,351)( 76,350)( 77,349)( 78,348)( 79,347)( 80,346)
( 81,345)( 82,344)( 83,343)( 84,342)( 85,341)( 86,340)( 87,339)( 88,338)
( 89,337)( 90,336)( 91,335)( 92,334)( 93,333)( 94,332)( 95,331)( 96,330)
( 97,329)( 98,328)( 99,327)(100,326)(101,325)(102,324)(103,323)(104,322)
(105,321)(106,320)(107,319)(108,318)(109,317)(110,316)(111,315)(112,314)
(113,313)(114,312)(115,311)(116,310)(117,309)(118,308)(119,307)(120,306)
(121,305)(122,304)(123,303)(124,302)(125,301)(126,401)(127,405)(128,404)
(129,403)(130,402)(131,425)(132,424)(133,423)(134,422)(135,421)(136,420)
(137,419)(138,418)(139,417)(140,416)(141,415)(142,414)(143,413)(144,412)
(145,411)(146,410)(147,409)(148,408)(149,407)(150,406)(151,376)(152,380)
(153,379)(154,378)(155,377)(156,400)(157,399)(158,398)(159,397)(160,396)
(161,395)(162,394)(163,393)(164,392)(165,391)(166,390)(167,389)(168,388)
(169,387)(170,386)(171,385)(172,384)(173,383)(174,382)(175,381)(176,500)
(177,499)(178,498)(179,497)(180,496)(181,495)(182,494)(183,493)(184,492)
(185,491)(186,490)(187,489)(188,488)(189,487)(190,486)(191,485)(192,484)
(193,483)(194,482)(195,481)(196,480)(197,479)(198,478)(199,477)(200,476)
(201,475)(202,474)(203,473)(204,472)(205,471)(206,470)(207,469)(208,468)
(209,467)(210,466)(211,465)(212,464)(213,463)(214,462)(215,461)(216,460)
(217,459)(218,458)(219,457)(220,456)(221,455)(222,454)(223,453)(224,452)
(225,451)(226,450)(227,449)(228,448)(229,447)(230,446)(231,445)(232,444)
(233,443)(234,442)(235,441)(236,440)(237,439)(238,438)(239,437)(240,436)
(241,435)(242,434)(243,433)(244,432)(245,431)(246,430)(247,429)(248,428)
(249,427)(250,426);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(500)!( 2, 5)( 3, 4)( 6, 25)( 7, 24)( 8, 23)( 9, 22)( 10, 21)
( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 26,125)( 27,124)( 28,123)
( 29,122)( 30,121)( 31,120)( 32,119)( 33,118)( 34,117)( 35,116)( 36,115)
( 37,114)( 38,113)( 39,112)( 40,111)( 41,110)( 42,109)( 43,108)( 44,107)
( 45,106)( 46,105)( 47,104)( 48,103)( 49,102)( 50,101)( 51,100)( 52, 99)
( 53, 98)( 54, 97)( 55, 96)( 56, 95)( 57, 94)( 58, 93)( 59, 92)( 60, 91)
( 61, 90)( 62, 89)( 63, 88)( 64, 87)( 65, 86)( 66, 85)( 67, 84)( 68, 83)
( 69, 82)( 70, 81)( 71, 80)( 72, 79)( 73, 78)( 74, 77)( 75, 76)(127,130)
(128,129)(131,150)(132,149)(133,148)(134,147)(135,146)(136,145)(137,144)
(138,143)(139,142)(140,141)(151,250)(152,249)(153,248)(154,247)(155,246)
(156,245)(157,244)(158,243)(159,242)(160,241)(161,240)(162,239)(163,238)
(164,237)(165,236)(166,235)(167,234)(168,233)(169,232)(170,231)(171,230)
(172,229)(173,228)(174,227)(175,226)(176,225)(177,224)(178,223)(179,222)
(180,221)(181,220)(182,219)(183,218)(184,217)(185,216)(186,215)(187,214)
(188,213)(189,212)(190,211)(191,210)(192,209)(193,208)(194,207)(195,206)
(196,205)(197,204)(198,203)(199,202)(200,201)(251,376)(252,380)(253,379)
(254,378)(255,377)(256,400)(257,399)(258,398)(259,397)(260,396)(261,395)
(262,394)(263,393)(264,392)(265,391)(266,390)(267,389)(268,388)(269,387)
(270,386)(271,385)(272,384)(273,383)(274,382)(275,381)(276,500)(277,499)
(278,498)(279,497)(280,496)(281,495)(282,494)(283,493)(284,492)(285,491)
(286,490)(287,489)(288,488)(289,487)(290,486)(291,485)(292,484)(293,483)
(294,482)(295,481)(296,480)(297,479)(298,478)(299,477)(300,476)(301,475)
(302,474)(303,473)(304,472)(305,471)(306,470)(307,469)(308,468)(309,467)
(310,466)(311,465)(312,464)(313,463)(314,462)(315,461)(316,460)(317,459)
(318,458)(319,457)(320,456)(321,455)(322,454)(323,453)(324,452)(325,451)
(326,450)(327,449)(328,448)(329,447)(330,446)(331,445)(332,444)(333,443)
(334,442)(335,441)(336,440)(337,439)(338,438)(339,437)(340,436)(341,435)
(342,434)(343,433)(344,432)(345,431)(346,430)(347,429)(348,428)(349,427)
(350,426)(351,425)(352,424)(353,423)(354,422)(355,421)(356,420)(357,419)
(358,418)(359,417)(360,416)(361,415)(362,414)(363,413)(364,412)(365,411)
(366,410)(367,409)(368,408)(369,407)(370,406)(371,405)(372,404)(373,403)
(374,402)(375,401);
s1 := Sym(500)!( 1,276)( 2,280)( 3,279)( 4,278)( 5,277)( 6,300)( 7,299)
( 8,298)( 9,297)( 10,296)( 11,295)( 12,294)( 13,293)( 14,292)( 15,291)
( 16,290)( 17,289)( 18,288)( 19,287)( 20,286)( 21,285)( 22,284)( 23,283)
( 24,282)( 25,281)( 26,251)( 27,255)( 28,254)( 29,253)( 30,252)( 31,275)
( 32,274)( 33,273)( 34,272)( 35,271)( 36,270)( 37,269)( 38,268)( 39,267)
( 40,266)( 41,265)( 42,264)( 43,263)( 44,262)( 45,261)( 46,260)( 47,259)
( 48,258)( 49,257)( 50,256)( 51,375)( 52,374)( 53,373)( 54,372)( 55,371)
( 56,370)( 57,369)( 58,368)( 59,367)( 60,366)( 61,365)( 62,364)( 63,363)
( 64,362)( 65,361)( 66,360)( 67,359)( 68,358)( 69,357)( 70,356)( 71,355)
( 72,354)( 73,353)( 74,352)( 75,351)( 76,350)( 77,349)( 78,348)( 79,347)
( 80,346)( 81,345)( 82,344)( 83,343)( 84,342)( 85,341)( 86,340)( 87,339)
( 88,338)( 89,337)( 90,336)( 91,335)( 92,334)( 93,333)( 94,332)( 95,331)
( 96,330)( 97,329)( 98,328)( 99,327)(100,326)(101,325)(102,324)(103,323)
(104,322)(105,321)(106,320)(107,319)(108,318)(109,317)(110,316)(111,315)
(112,314)(113,313)(114,312)(115,311)(116,310)(117,309)(118,308)(119,307)
(120,306)(121,305)(122,304)(123,303)(124,302)(125,301)(126,401)(127,405)
(128,404)(129,403)(130,402)(131,425)(132,424)(133,423)(134,422)(135,421)
(136,420)(137,419)(138,418)(139,417)(140,416)(141,415)(142,414)(143,413)
(144,412)(145,411)(146,410)(147,409)(148,408)(149,407)(150,406)(151,376)
(152,380)(153,379)(154,378)(155,377)(156,400)(157,399)(158,398)(159,397)
(160,396)(161,395)(162,394)(163,393)(164,392)(165,391)(166,390)(167,389)
(168,388)(169,387)(170,386)(171,385)(172,384)(173,383)(174,382)(175,381)
(176,500)(177,499)(178,498)(179,497)(180,496)(181,495)(182,494)(183,493)
(184,492)(185,491)(186,490)(187,489)(188,488)(189,487)(190,486)(191,485)
(192,484)(193,483)(194,482)(195,481)(196,480)(197,479)(198,478)(199,477)
(200,476)(201,475)(202,474)(203,473)(204,472)(205,471)(206,470)(207,469)
(208,468)(209,467)(210,466)(211,465)(212,464)(213,463)(214,462)(215,461)
(216,460)(217,459)(218,458)(219,457)(220,456)(221,455)(222,454)(223,453)
(224,452)(225,451)(226,450)(227,449)(228,448)(229,447)(230,446)(231,445)
(232,444)(233,443)(234,442)(235,441)(236,440)(237,439)(238,438)(239,437)
(240,436)(241,435)(242,434)(243,433)(244,432)(245,431)(246,430)(247,429)
(248,428)(249,427)(250,426);
poly := sub<Sym(500)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope