Polytope of Type {2,500}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,500}*2000
if this polytope has a name.
Group : SmallGroup(2000,37)
Rank : 3
Schlafli Type : {2,500}
Number of vertices, edges, etc : 2, 500, 500
Order of s0s1s2 : 500
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,250}*1000
   4-fold quotients : {2,125}*500
   5-fold quotients : {2,100}*400
   10-fold quotients : {2,50}*200
   20-fold quotients : {2,25}*100
   25-fold quotients : {2,20}*80
   50-fold quotients : {2,10}*40
   100-fold quotients : {2,5}*20
   125-fold quotients : {2,4}*16
   250-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  7)(  5,  6)(  8, 27)(  9, 26)( 10, 25)( 11, 24)( 12, 23)( 13, 22)
( 14, 21)( 15, 20)( 16, 19)( 17, 18)( 28,127)( 29,126)( 30,125)( 31,124)
( 32,123)( 33,122)( 34,121)( 35,120)( 36,119)( 37,118)( 38,117)( 39,116)
( 40,115)( 41,114)( 42,113)( 43,112)( 44,111)( 45,110)( 46,109)( 47,108)
( 48,107)( 49,106)( 50,105)( 51,104)( 52,103)( 53,102)( 54,101)( 55,100)
( 56, 99)( 57, 98)( 58, 97)( 59, 96)( 60, 95)( 61, 94)( 62, 93)( 63, 92)
( 64, 91)( 65, 90)( 66, 89)( 67, 88)( 68, 87)( 69, 86)( 70, 85)( 71, 84)
( 72, 83)( 73, 82)( 74, 81)( 75, 80)( 76, 79)( 77, 78)(129,132)(130,131)
(133,152)(134,151)(135,150)(136,149)(137,148)(138,147)(139,146)(140,145)
(141,144)(142,143)(153,252)(154,251)(155,250)(156,249)(157,248)(158,247)
(159,246)(160,245)(161,244)(162,243)(163,242)(164,241)(165,240)(166,239)
(167,238)(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)(174,231)
(175,230)(176,229)(177,228)(178,227)(179,226)(180,225)(181,224)(182,223)
(183,222)(184,221)(185,220)(186,219)(187,218)(188,217)(189,216)(190,215)
(191,214)(192,213)(193,212)(194,211)(195,210)(196,209)(197,208)(198,207)
(199,206)(200,205)(201,204)(202,203)(253,378)(254,382)(255,381)(256,380)
(257,379)(258,402)(259,401)(260,400)(261,399)(262,398)(263,397)(264,396)
(265,395)(266,394)(267,393)(268,392)(269,391)(270,390)(271,389)(272,388)
(273,387)(274,386)(275,385)(276,384)(277,383)(278,502)(279,501)(280,500)
(281,499)(282,498)(283,497)(284,496)(285,495)(286,494)(287,493)(288,492)
(289,491)(290,490)(291,489)(292,488)(293,487)(294,486)(295,485)(296,484)
(297,483)(298,482)(299,481)(300,480)(301,479)(302,478)(303,477)(304,476)
(305,475)(306,474)(307,473)(308,472)(309,471)(310,470)(311,469)(312,468)
(313,467)(314,466)(315,465)(316,464)(317,463)(318,462)(319,461)(320,460)
(321,459)(322,458)(323,457)(324,456)(325,455)(326,454)(327,453)(328,452)
(329,451)(330,450)(331,449)(332,448)(333,447)(334,446)(335,445)(336,444)
(337,443)(338,442)(339,441)(340,440)(341,439)(342,438)(343,437)(344,436)
(345,435)(346,434)(347,433)(348,432)(349,431)(350,430)(351,429)(352,428)
(353,427)(354,426)(355,425)(356,424)(357,423)(358,422)(359,421)(360,420)
(361,419)(362,418)(363,417)(364,416)(365,415)(366,414)(367,413)(368,412)
(369,411)(370,410)(371,409)(372,408)(373,407)(374,406)(375,405)(376,404)
(377,403);;
s2 := (  3,278)(  4,282)(  5,281)(  6,280)(  7,279)(  8,302)(  9,301)( 10,300)
( 11,299)( 12,298)( 13,297)( 14,296)( 15,295)( 16,294)( 17,293)( 18,292)
( 19,291)( 20,290)( 21,289)( 22,288)( 23,287)( 24,286)( 25,285)( 26,284)
( 27,283)( 28,253)( 29,257)( 30,256)( 31,255)( 32,254)( 33,277)( 34,276)
( 35,275)( 36,274)( 37,273)( 38,272)( 39,271)( 40,270)( 41,269)( 42,268)
( 43,267)( 44,266)( 45,265)( 46,264)( 47,263)( 48,262)( 49,261)( 50,260)
( 51,259)( 52,258)( 53,377)( 54,376)( 55,375)( 56,374)( 57,373)( 58,372)
( 59,371)( 60,370)( 61,369)( 62,368)( 63,367)( 64,366)( 65,365)( 66,364)
( 67,363)( 68,362)( 69,361)( 70,360)( 71,359)( 72,358)( 73,357)( 74,356)
( 75,355)( 76,354)( 77,353)( 78,352)( 79,351)( 80,350)( 81,349)( 82,348)
( 83,347)( 84,346)( 85,345)( 86,344)( 87,343)( 88,342)( 89,341)( 90,340)
( 91,339)( 92,338)( 93,337)( 94,336)( 95,335)( 96,334)( 97,333)( 98,332)
( 99,331)(100,330)(101,329)(102,328)(103,327)(104,326)(105,325)(106,324)
(107,323)(108,322)(109,321)(110,320)(111,319)(112,318)(113,317)(114,316)
(115,315)(116,314)(117,313)(118,312)(119,311)(120,310)(121,309)(122,308)
(123,307)(124,306)(125,305)(126,304)(127,303)(128,403)(129,407)(130,406)
(131,405)(132,404)(133,427)(134,426)(135,425)(136,424)(137,423)(138,422)
(139,421)(140,420)(141,419)(142,418)(143,417)(144,416)(145,415)(146,414)
(147,413)(148,412)(149,411)(150,410)(151,409)(152,408)(153,378)(154,382)
(155,381)(156,380)(157,379)(158,402)(159,401)(160,400)(161,399)(162,398)
(163,397)(164,396)(165,395)(166,394)(167,393)(168,392)(169,391)(170,390)
(171,389)(172,388)(173,387)(174,386)(175,385)(176,384)(177,383)(178,502)
(179,501)(180,500)(181,499)(182,498)(183,497)(184,496)(185,495)(186,494)
(187,493)(188,492)(189,491)(190,490)(191,489)(192,488)(193,487)(194,486)
(195,485)(196,484)(197,483)(198,482)(199,481)(200,480)(201,479)(202,478)
(203,477)(204,476)(205,475)(206,474)(207,473)(208,472)(209,471)(210,470)
(211,469)(212,468)(213,467)(214,466)(215,465)(216,464)(217,463)(218,462)
(219,461)(220,460)(221,459)(222,458)(223,457)(224,456)(225,455)(226,454)
(227,453)(228,452)(229,451)(230,450)(231,449)(232,448)(233,447)(234,446)
(235,445)(236,444)(237,443)(238,442)(239,441)(240,440)(241,439)(242,438)
(243,437)(244,436)(245,435)(246,434)(247,433)(248,432)(249,431)(250,430)
(251,429)(252,428);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(502)!(1,2);
s1 := Sym(502)!(  4,  7)(  5,  6)(  8, 27)(  9, 26)( 10, 25)( 11, 24)( 12, 23)
( 13, 22)( 14, 21)( 15, 20)( 16, 19)( 17, 18)( 28,127)( 29,126)( 30,125)
( 31,124)( 32,123)( 33,122)( 34,121)( 35,120)( 36,119)( 37,118)( 38,117)
( 39,116)( 40,115)( 41,114)( 42,113)( 43,112)( 44,111)( 45,110)( 46,109)
( 47,108)( 48,107)( 49,106)( 50,105)( 51,104)( 52,103)( 53,102)( 54,101)
( 55,100)( 56, 99)( 57, 98)( 58, 97)( 59, 96)( 60, 95)( 61, 94)( 62, 93)
( 63, 92)( 64, 91)( 65, 90)( 66, 89)( 67, 88)( 68, 87)( 69, 86)( 70, 85)
( 71, 84)( 72, 83)( 73, 82)( 74, 81)( 75, 80)( 76, 79)( 77, 78)(129,132)
(130,131)(133,152)(134,151)(135,150)(136,149)(137,148)(138,147)(139,146)
(140,145)(141,144)(142,143)(153,252)(154,251)(155,250)(156,249)(157,248)
(158,247)(159,246)(160,245)(161,244)(162,243)(163,242)(164,241)(165,240)
(166,239)(167,238)(168,237)(169,236)(170,235)(171,234)(172,233)(173,232)
(174,231)(175,230)(176,229)(177,228)(178,227)(179,226)(180,225)(181,224)
(182,223)(183,222)(184,221)(185,220)(186,219)(187,218)(188,217)(189,216)
(190,215)(191,214)(192,213)(193,212)(194,211)(195,210)(196,209)(197,208)
(198,207)(199,206)(200,205)(201,204)(202,203)(253,378)(254,382)(255,381)
(256,380)(257,379)(258,402)(259,401)(260,400)(261,399)(262,398)(263,397)
(264,396)(265,395)(266,394)(267,393)(268,392)(269,391)(270,390)(271,389)
(272,388)(273,387)(274,386)(275,385)(276,384)(277,383)(278,502)(279,501)
(280,500)(281,499)(282,498)(283,497)(284,496)(285,495)(286,494)(287,493)
(288,492)(289,491)(290,490)(291,489)(292,488)(293,487)(294,486)(295,485)
(296,484)(297,483)(298,482)(299,481)(300,480)(301,479)(302,478)(303,477)
(304,476)(305,475)(306,474)(307,473)(308,472)(309,471)(310,470)(311,469)
(312,468)(313,467)(314,466)(315,465)(316,464)(317,463)(318,462)(319,461)
(320,460)(321,459)(322,458)(323,457)(324,456)(325,455)(326,454)(327,453)
(328,452)(329,451)(330,450)(331,449)(332,448)(333,447)(334,446)(335,445)
(336,444)(337,443)(338,442)(339,441)(340,440)(341,439)(342,438)(343,437)
(344,436)(345,435)(346,434)(347,433)(348,432)(349,431)(350,430)(351,429)
(352,428)(353,427)(354,426)(355,425)(356,424)(357,423)(358,422)(359,421)
(360,420)(361,419)(362,418)(363,417)(364,416)(365,415)(366,414)(367,413)
(368,412)(369,411)(370,410)(371,409)(372,408)(373,407)(374,406)(375,405)
(376,404)(377,403);
s2 := Sym(502)!(  3,278)(  4,282)(  5,281)(  6,280)(  7,279)(  8,302)(  9,301)
( 10,300)( 11,299)( 12,298)( 13,297)( 14,296)( 15,295)( 16,294)( 17,293)
( 18,292)( 19,291)( 20,290)( 21,289)( 22,288)( 23,287)( 24,286)( 25,285)
( 26,284)( 27,283)( 28,253)( 29,257)( 30,256)( 31,255)( 32,254)( 33,277)
( 34,276)( 35,275)( 36,274)( 37,273)( 38,272)( 39,271)( 40,270)( 41,269)
( 42,268)( 43,267)( 44,266)( 45,265)( 46,264)( 47,263)( 48,262)( 49,261)
( 50,260)( 51,259)( 52,258)( 53,377)( 54,376)( 55,375)( 56,374)( 57,373)
( 58,372)( 59,371)( 60,370)( 61,369)( 62,368)( 63,367)( 64,366)( 65,365)
( 66,364)( 67,363)( 68,362)( 69,361)( 70,360)( 71,359)( 72,358)( 73,357)
( 74,356)( 75,355)( 76,354)( 77,353)( 78,352)( 79,351)( 80,350)( 81,349)
( 82,348)( 83,347)( 84,346)( 85,345)( 86,344)( 87,343)( 88,342)( 89,341)
( 90,340)( 91,339)( 92,338)( 93,337)( 94,336)( 95,335)( 96,334)( 97,333)
( 98,332)( 99,331)(100,330)(101,329)(102,328)(103,327)(104,326)(105,325)
(106,324)(107,323)(108,322)(109,321)(110,320)(111,319)(112,318)(113,317)
(114,316)(115,315)(116,314)(117,313)(118,312)(119,311)(120,310)(121,309)
(122,308)(123,307)(124,306)(125,305)(126,304)(127,303)(128,403)(129,407)
(130,406)(131,405)(132,404)(133,427)(134,426)(135,425)(136,424)(137,423)
(138,422)(139,421)(140,420)(141,419)(142,418)(143,417)(144,416)(145,415)
(146,414)(147,413)(148,412)(149,411)(150,410)(151,409)(152,408)(153,378)
(154,382)(155,381)(156,380)(157,379)(158,402)(159,401)(160,400)(161,399)
(162,398)(163,397)(164,396)(165,395)(166,394)(167,393)(168,392)(169,391)
(170,390)(171,389)(172,388)(173,387)(174,386)(175,385)(176,384)(177,383)
(178,502)(179,501)(180,500)(181,499)(182,498)(183,497)(184,496)(185,495)
(186,494)(187,493)(188,492)(189,491)(190,490)(191,489)(192,488)(193,487)
(194,486)(195,485)(196,484)(197,483)(198,482)(199,481)(200,480)(201,479)
(202,478)(203,477)(204,476)(205,475)(206,474)(207,473)(208,472)(209,471)
(210,470)(211,469)(212,468)(213,467)(214,466)(215,465)(216,464)(217,463)
(218,462)(219,461)(220,460)(221,459)(222,458)(223,457)(224,456)(225,455)
(226,454)(227,453)(228,452)(229,451)(230,450)(231,449)(232,448)(233,447)
(234,446)(235,445)(236,444)(237,443)(238,442)(239,441)(240,440)(241,439)
(242,438)(243,437)(244,436)(245,435)(246,434)(247,433)(248,432)(249,431)
(250,430)(251,429)(252,428);
poly := sub<Sym(502)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope