include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,10}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,10}*1000d
if this polytope has a name.
Group : SmallGroup(1000,92)
Rank : 3
Schlafli Type : {20,10}
Number of vertices, edges, etc : 50, 250, 25
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{20,10,2} of size 2000
Vertex Figure Of :
{2,20,10} of size 2000
Quotients (Maximal Quotients in Boldface) :
5-fold quotients : {4,10}*200
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,10}*2000e
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)( 11, 64)
( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)( 19, 94)
( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)( 27,105)
( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)( 43, 70)
( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)( 51, 76)
( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)( 59,109)
( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)( 88,112)
( 89,111)( 90,115)(116,117)(118,120);;
s1 := ( 1, 3)( 4, 5)( 6, 91)( 7, 95)( 8, 94)( 9, 93)( 10, 92)( 11, 33)
( 12, 32)( 13, 31)( 14, 35)( 15, 34)( 16,124)( 17,123)( 18,122)( 19,121)
( 20,125)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 65)( 26, 73)( 27, 72)
( 28, 71)( 29, 75)( 30, 74)( 36, 77)( 37, 76)( 38, 80)( 39, 79)( 40, 78)
( 41, 45)( 42, 44)( 46,107)( 47,106)( 48,110)( 49,109)( 50,108)( 51,116)
( 52,120)( 53,119)( 54,118)( 55,117)( 56, 58)( 59, 60)( 66, 89)( 67, 88)
( 68, 87)( 69, 86)( 70, 90)( 81,101)( 82,105)( 83,104)( 84,103)( 85,102)
( 96, 97)( 98,100)(111,112)(113,115);;
s2 := ( 1, 71)( 2, 72)( 3, 73)( 4, 74)( 5, 75)( 6, 66)( 7, 67)( 8, 68)
( 9, 69)( 10, 70)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)( 16, 56)
( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 51)( 22, 52)( 23, 53)( 24, 54)
( 25, 55)( 26, 46)( 27, 47)( 28, 48)( 29, 49)( 30, 50)( 31, 41)( 32, 42)
( 33, 43)( 34, 44)( 35, 45)( 76,121)( 77,122)( 78,123)( 79,124)( 80,125)
( 81,116)( 82,117)( 83,118)( 84,119)( 85,120)( 86,111)( 87,112)( 88,113)
( 89,114)( 90,115)( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)( 96,101)
( 97,102)( 98,103)( 99,104)(100,105);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(125)!( 2, 5)( 3, 4)( 6, 32)( 7, 31)( 8, 35)( 9, 34)( 10, 33)
( 11, 64)( 12, 63)( 13, 62)( 14, 61)( 15, 65)( 16, 92)( 17, 91)( 18, 95)
( 19, 94)( 20, 93)( 21,121)( 22,125)( 23,124)( 24,123)( 25,122)( 26,101)
( 27,105)( 28,104)( 29,103)( 30,102)( 36, 39)( 37, 38)( 41, 67)( 42, 66)
( 43, 70)( 44, 69)( 45, 68)( 46, 96)( 47,100)( 48, 99)( 49, 98)( 50, 97)
( 51, 76)( 52, 80)( 53, 79)( 54, 78)( 55, 77)( 56,107)( 57,106)( 58,110)
( 59,109)( 60,108)( 72, 75)( 73, 74)( 81, 82)( 83, 85)( 86,114)( 87,113)
( 88,112)( 89,111)( 90,115)(116,117)(118,120);
s1 := Sym(125)!( 1, 3)( 4, 5)( 6, 91)( 7, 95)( 8, 94)( 9, 93)( 10, 92)
( 11, 33)( 12, 32)( 13, 31)( 14, 35)( 15, 34)( 16,124)( 17,123)( 18,122)
( 19,121)( 20,125)( 21, 64)( 22, 63)( 23, 62)( 24, 61)( 25, 65)( 26, 73)
( 27, 72)( 28, 71)( 29, 75)( 30, 74)( 36, 77)( 37, 76)( 38, 80)( 39, 79)
( 40, 78)( 41, 45)( 42, 44)( 46,107)( 47,106)( 48,110)( 49,109)( 50,108)
( 51,116)( 52,120)( 53,119)( 54,118)( 55,117)( 56, 58)( 59, 60)( 66, 89)
( 67, 88)( 68, 87)( 69, 86)( 70, 90)( 81,101)( 82,105)( 83,104)( 84,103)
( 85,102)( 96, 97)( 98,100)(111,112)(113,115);
s2 := Sym(125)!( 1, 71)( 2, 72)( 3, 73)( 4, 74)( 5, 75)( 6, 66)( 7, 67)
( 8, 68)( 9, 69)( 10, 70)( 11, 61)( 12, 62)( 13, 63)( 14, 64)( 15, 65)
( 16, 56)( 17, 57)( 18, 58)( 19, 59)( 20, 60)( 21, 51)( 22, 52)( 23, 53)
( 24, 54)( 25, 55)( 26, 46)( 27, 47)( 28, 48)( 29, 49)( 30, 50)( 31, 41)
( 32, 42)( 33, 43)( 34, 44)( 35, 45)( 76,121)( 77,122)( 78,123)( 79,124)
( 80,125)( 81,116)( 82,117)( 83,118)( 84,119)( 85,120)( 86,111)( 87,112)
( 88,113)( 89,114)( 90,115)( 91,106)( 92,107)( 93,108)( 94,109)( 95,110)
( 96,101)( 97,102)( 98,103)( 99,104)(100,105);
poly := sub<Sym(125)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1 >;
References : None.
to this polytope