Polytope of Type {2,20,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,20,10}*2000d
if this polytope has a name.
Group : SmallGroup(2000,482)
Rank : 4
Schlafli Type : {2,20,10}
Number of vertices, edges, etc : 2, 50, 250, 25
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   5-fold quotients : {2,4,10}*400
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  7)(  5,  6)(  8, 34)(  9, 33)( 10, 37)( 11, 36)( 12, 35)( 13, 66)
( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)( 21, 96)
( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)( 29,107)
( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)( 45, 72)
( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)( 53, 78)
( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)( 61,111)
( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)( 90,114)
( 91,113)( 92,117)(118,119)(120,122);;
s2 := (  3,  5)(  6,  7)(  8, 93)(  9, 97)( 10, 96)( 11, 95)( 12, 94)( 13, 35)
( 14, 34)( 15, 33)( 16, 37)( 17, 36)( 18,126)( 19,125)( 20,124)( 21,123)
( 22,127)( 23, 66)( 24, 65)( 25, 64)( 26, 63)( 27, 67)( 28, 75)( 29, 74)
( 30, 73)( 31, 77)( 32, 76)( 38, 79)( 39, 78)( 40, 82)( 41, 81)( 42, 80)
( 43, 47)( 44, 46)( 48,109)( 49,108)( 50,112)( 51,111)( 52,110)( 53,118)
( 54,122)( 55,121)( 56,120)( 57,119)( 58, 60)( 61, 62)( 68, 91)( 69, 90)
( 70, 89)( 71, 88)( 72, 92)( 83,103)( 84,107)( 85,106)( 86,105)( 87,104)
( 98, 99)(100,102)(113,114)(115,117);;
s3 := (  3, 73)(  4, 74)(  5, 75)(  6, 76)(  7, 77)(  8, 68)(  9, 69)( 10, 70)
( 11, 71)( 12, 72)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)( 18, 58)
( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 53)( 24, 54)( 25, 55)( 26, 56)
( 27, 57)( 28, 48)( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 43)( 34, 44)
( 35, 45)( 36, 46)( 37, 47)( 78,123)( 79,124)( 80,125)( 81,126)( 82,127)
( 83,118)( 84,119)( 85,120)( 86,121)( 87,122)( 88,113)( 89,114)( 90,115)
( 91,116)( 92,117)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,103)
( 99,104)(100,105)(101,106)(102,107);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(127)!(1,2);
s1 := Sym(127)!(  4,  7)(  5,  6)(  8, 34)(  9, 33)( 10, 37)( 11, 36)( 12, 35)
( 13, 66)( 14, 65)( 15, 64)( 16, 63)( 17, 67)( 18, 94)( 19, 93)( 20, 97)
( 21, 96)( 22, 95)( 23,123)( 24,127)( 25,126)( 26,125)( 27,124)( 28,103)
( 29,107)( 30,106)( 31,105)( 32,104)( 38, 41)( 39, 40)( 43, 69)( 44, 68)
( 45, 72)( 46, 71)( 47, 70)( 48, 98)( 49,102)( 50,101)( 51,100)( 52, 99)
( 53, 78)( 54, 82)( 55, 81)( 56, 80)( 57, 79)( 58,109)( 59,108)( 60,112)
( 61,111)( 62,110)( 74, 77)( 75, 76)( 83, 84)( 85, 87)( 88,116)( 89,115)
( 90,114)( 91,113)( 92,117)(118,119)(120,122);
s2 := Sym(127)!(  3,  5)(  6,  7)(  8, 93)(  9, 97)( 10, 96)( 11, 95)( 12, 94)
( 13, 35)( 14, 34)( 15, 33)( 16, 37)( 17, 36)( 18,126)( 19,125)( 20,124)
( 21,123)( 22,127)( 23, 66)( 24, 65)( 25, 64)( 26, 63)( 27, 67)( 28, 75)
( 29, 74)( 30, 73)( 31, 77)( 32, 76)( 38, 79)( 39, 78)( 40, 82)( 41, 81)
( 42, 80)( 43, 47)( 44, 46)( 48,109)( 49,108)( 50,112)( 51,111)( 52,110)
( 53,118)( 54,122)( 55,121)( 56,120)( 57,119)( 58, 60)( 61, 62)( 68, 91)
( 69, 90)( 70, 89)( 71, 88)( 72, 92)( 83,103)( 84,107)( 85,106)( 86,105)
( 87,104)( 98, 99)(100,102)(113,114)(115,117);
s3 := Sym(127)!(  3, 73)(  4, 74)(  5, 75)(  6, 76)(  7, 77)(  8, 68)(  9, 69)
( 10, 70)( 11, 71)( 12, 72)( 13, 63)( 14, 64)( 15, 65)( 16, 66)( 17, 67)
( 18, 58)( 19, 59)( 20, 60)( 21, 61)( 22, 62)( 23, 53)( 24, 54)( 25, 55)
( 26, 56)( 27, 57)( 28, 48)( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 43)
( 34, 44)( 35, 45)( 36, 46)( 37, 47)( 78,123)( 79,124)( 80,125)( 81,126)
( 82,127)( 83,118)( 84,119)( 85,120)( 86,121)( 87,122)( 88,113)( 89,114)
( 90,115)( 91,116)( 92,117)( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)
( 98,103)( 99,104)(100,105)(101,106)(102,107);
poly := sub<Sym(127)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s3*s1*s2*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2*s3*s2 >; 
 

to this polytope