include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {508}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {508}*1016
Also Known As : 508-gon, {508}. if this polytope has another name.
Group : SmallGroup(1016,10)
Rank : 2
Schlafli Type : {508}
Number of vertices, edges, etc : 508, 508
Order of s0s1 : 508
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {254}*508
4-fold quotients : {127}*254
127-fold quotients : {4}*8
254-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2,127)( 3,126)( 4,125)( 5,124)( 6,123)( 7,122)( 8,121)( 9,120)
( 10,119)( 11,118)( 12,117)( 13,116)( 14,115)( 15,114)( 16,113)( 17,112)
( 18,111)( 19,110)( 20,109)( 21,108)( 22,107)( 23,106)( 24,105)( 25,104)
( 26,103)( 27,102)( 28,101)( 29,100)( 30, 99)( 31, 98)( 32, 97)( 33, 96)
( 34, 95)( 35, 94)( 36, 93)( 37, 92)( 38, 91)( 39, 90)( 40, 89)( 41, 88)
( 42, 87)( 43, 86)( 44, 85)( 45, 84)( 46, 83)( 47, 82)( 48, 81)( 49, 80)
( 50, 79)( 51, 78)( 52, 77)( 53, 76)( 54, 75)( 55, 74)( 56, 73)( 57, 72)
( 58, 71)( 59, 70)( 60, 69)( 61, 68)( 62, 67)( 63, 66)( 64, 65)(129,254)
(130,253)(131,252)(132,251)(133,250)(134,249)(135,248)(136,247)(137,246)
(138,245)(139,244)(140,243)(141,242)(142,241)(143,240)(144,239)(145,238)
(146,237)(147,236)(148,235)(149,234)(150,233)(151,232)(152,231)(153,230)
(154,229)(155,228)(156,227)(157,226)(158,225)(159,224)(160,223)(161,222)
(162,221)(163,220)(164,219)(165,218)(166,217)(167,216)(168,215)(169,214)
(170,213)(171,212)(172,211)(173,210)(174,209)(175,208)(176,207)(177,206)
(178,205)(179,204)(180,203)(181,202)(182,201)(183,200)(184,199)(185,198)
(186,197)(187,196)(188,195)(189,194)(190,193)(191,192)(255,382)(256,508)
(257,507)(258,506)(259,505)(260,504)(261,503)(262,502)(263,501)(264,500)
(265,499)(266,498)(267,497)(268,496)(269,495)(270,494)(271,493)(272,492)
(273,491)(274,490)(275,489)(276,488)(277,487)(278,486)(279,485)(280,484)
(281,483)(282,482)(283,481)(284,480)(285,479)(286,478)(287,477)(288,476)
(289,475)(290,474)(291,473)(292,472)(293,471)(294,470)(295,469)(296,468)
(297,467)(298,466)(299,465)(300,464)(301,463)(302,462)(303,461)(304,460)
(305,459)(306,458)(307,457)(308,456)(309,455)(310,454)(311,453)(312,452)
(313,451)(314,450)(315,449)(316,448)(317,447)(318,446)(319,445)(320,444)
(321,443)(322,442)(323,441)(324,440)(325,439)(326,438)(327,437)(328,436)
(329,435)(330,434)(331,433)(332,432)(333,431)(334,430)(335,429)(336,428)
(337,427)(338,426)(339,425)(340,424)(341,423)(342,422)(343,421)(344,420)
(345,419)(346,418)(347,417)(348,416)(349,415)(350,414)(351,413)(352,412)
(353,411)(354,410)(355,409)(356,408)(357,407)(358,406)(359,405)(360,404)
(361,403)(362,402)(363,401)(364,400)(365,399)(366,398)(367,397)(368,396)
(369,395)(370,394)(371,393)(372,392)(373,391)(374,390)(375,389)(376,388)
(377,387)(378,386)(379,385)(380,384)(381,383);;
s1 := ( 1,256)( 2,255)( 3,381)( 4,380)( 5,379)( 6,378)( 7,377)( 8,376)
( 9,375)( 10,374)( 11,373)( 12,372)( 13,371)( 14,370)( 15,369)( 16,368)
( 17,367)( 18,366)( 19,365)( 20,364)( 21,363)( 22,362)( 23,361)( 24,360)
( 25,359)( 26,358)( 27,357)( 28,356)( 29,355)( 30,354)( 31,353)( 32,352)
( 33,351)( 34,350)( 35,349)( 36,348)( 37,347)( 38,346)( 39,345)( 40,344)
( 41,343)( 42,342)( 43,341)( 44,340)( 45,339)( 46,338)( 47,337)( 48,336)
( 49,335)( 50,334)( 51,333)( 52,332)( 53,331)( 54,330)( 55,329)( 56,328)
( 57,327)( 58,326)( 59,325)( 60,324)( 61,323)( 62,322)( 63,321)( 64,320)
( 65,319)( 66,318)( 67,317)( 68,316)( 69,315)( 70,314)( 71,313)( 72,312)
( 73,311)( 74,310)( 75,309)( 76,308)( 77,307)( 78,306)( 79,305)( 80,304)
( 81,303)( 82,302)( 83,301)( 84,300)( 85,299)( 86,298)( 87,297)( 88,296)
( 89,295)( 90,294)( 91,293)( 92,292)( 93,291)( 94,290)( 95,289)( 96,288)
( 97,287)( 98,286)( 99,285)(100,284)(101,283)(102,282)(103,281)(104,280)
(105,279)(106,278)(107,277)(108,276)(109,275)(110,274)(111,273)(112,272)
(113,271)(114,270)(115,269)(116,268)(117,267)(118,266)(119,265)(120,264)
(121,263)(122,262)(123,261)(124,260)(125,259)(126,258)(127,257)(128,383)
(129,382)(130,508)(131,507)(132,506)(133,505)(134,504)(135,503)(136,502)
(137,501)(138,500)(139,499)(140,498)(141,497)(142,496)(143,495)(144,494)
(145,493)(146,492)(147,491)(148,490)(149,489)(150,488)(151,487)(152,486)
(153,485)(154,484)(155,483)(156,482)(157,481)(158,480)(159,479)(160,478)
(161,477)(162,476)(163,475)(164,474)(165,473)(166,472)(167,471)(168,470)
(169,469)(170,468)(171,467)(172,466)(173,465)(174,464)(175,463)(176,462)
(177,461)(178,460)(179,459)(180,458)(181,457)(182,456)(183,455)(184,454)
(185,453)(186,452)(187,451)(188,450)(189,449)(190,448)(191,447)(192,446)
(193,445)(194,444)(195,443)(196,442)(197,441)(198,440)(199,439)(200,438)
(201,437)(202,436)(203,435)(204,434)(205,433)(206,432)(207,431)(208,430)
(209,429)(210,428)(211,427)(212,426)(213,425)(214,424)(215,423)(216,422)
(217,421)(218,420)(219,419)(220,418)(221,417)(222,416)(223,415)(224,414)
(225,413)(226,412)(227,411)(228,410)(229,409)(230,408)(231,407)(232,406)
(233,405)(234,404)(235,403)(236,402)(237,401)(238,400)(239,399)(240,398)
(241,397)(242,396)(243,395)(244,394)(245,393)(246,392)(247,391)(248,390)
(249,389)(250,388)(251,387)(252,386)(253,385)(254,384);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(508)!( 2,127)( 3,126)( 4,125)( 5,124)( 6,123)( 7,122)( 8,121)
( 9,120)( 10,119)( 11,118)( 12,117)( 13,116)( 14,115)( 15,114)( 16,113)
( 17,112)( 18,111)( 19,110)( 20,109)( 21,108)( 22,107)( 23,106)( 24,105)
( 25,104)( 26,103)( 27,102)( 28,101)( 29,100)( 30, 99)( 31, 98)( 32, 97)
( 33, 96)( 34, 95)( 35, 94)( 36, 93)( 37, 92)( 38, 91)( 39, 90)( 40, 89)
( 41, 88)( 42, 87)( 43, 86)( 44, 85)( 45, 84)( 46, 83)( 47, 82)( 48, 81)
( 49, 80)( 50, 79)( 51, 78)( 52, 77)( 53, 76)( 54, 75)( 55, 74)( 56, 73)
( 57, 72)( 58, 71)( 59, 70)( 60, 69)( 61, 68)( 62, 67)( 63, 66)( 64, 65)
(129,254)(130,253)(131,252)(132,251)(133,250)(134,249)(135,248)(136,247)
(137,246)(138,245)(139,244)(140,243)(141,242)(142,241)(143,240)(144,239)
(145,238)(146,237)(147,236)(148,235)(149,234)(150,233)(151,232)(152,231)
(153,230)(154,229)(155,228)(156,227)(157,226)(158,225)(159,224)(160,223)
(161,222)(162,221)(163,220)(164,219)(165,218)(166,217)(167,216)(168,215)
(169,214)(170,213)(171,212)(172,211)(173,210)(174,209)(175,208)(176,207)
(177,206)(178,205)(179,204)(180,203)(181,202)(182,201)(183,200)(184,199)
(185,198)(186,197)(187,196)(188,195)(189,194)(190,193)(191,192)(255,382)
(256,508)(257,507)(258,506)(259,505)(260,504)(261,503)(262,502)(263,501)
(264,500)(265,499)(266,498)(267,497)(268,496)(269,495)(270,494)(271,493)
(272,492)(273,491)(274,490)(275,489)(276,488)(277,487)(278,486)(279,485)
(280,484)(281,483)(282,482)(283,481)(284,480)(285,479)(286,478)(287,477)
(288,476)(289,475)(290,474)(291,473)(292,472)(293,471)(294,470)(295,469)
(296,468)(297,467)(298,466)(299,465)(300,464)(301,463)(302,462)(303,461)
(304,460)(305,459)(306,458)(307,457)(308,456)(309,455)(310,454)(311,453)
(312,452)(313,451)(314,450)(315,449)(316,448)(317,447)(318,446)(319,445)
(320,444)(321,443)(322,442)(323,441)(324,440)(325,439)(326,438)(327,437)
(328,436)(329,435)(330,434)(331,433)(332,432)(333,431)(334,430)(335,429)
(336,428)(337,427)(338,426)(339,425)(340,424)(341,423)(342,422)(343,421)
(344,420)(345,419)(346,418)(347,417)(348,416)(349,415)(350,414)(351,413)
(352,412)(353,411)(354,410)(355,409)(356,408)(357,407)(358,406)(359,405)
(360,404)(361,403)(362,402)(363,401)(364,400)(365,399)(366,398)(367,397)
(368,396)(369,395)(370,394)(371,393)(372,392)(373,391)(374,390)(375,389)
(376,388)(377,387)(378,386)(379,385)(380,384)(381,383);
s1 := Sym(508)!( 1,256)( 2,255)( 3,381)( 4,380)( 5,379)( 6,378)( 7,377)
( 8,376)( 9,375)( 10,374)( 11,373)( 12,372)( 13,371)( 14,370)( 15,369)
( 16,368)( 17,367)( 18,366)( 19,365)( 20,364)( 21,363)( 22,362)( 23,361)
( 24,360)( 25,359)( 26,358)( 27,357)( 28,356)( 29,355)( 30,354)( 31,353)
( 32,352)( 33,351)( 34,350)( 35,349)( 36,348)( 37,347)( 38,346)( 39,345)
( 40,344)( 41,343)( 42,342)( 43,341)( 44,340)( 45,339)( 46,338)( 47,337)
( 48,336)( 49,335)( 50,334)( 51,333)( 52,332)( 53,331)( 54,330)( 55,329)
( 56,328)( 57,327)( 58,326)( 59,325)( 60,324)( 61,323)( 62,322)( 63,321)
( 64,320)( 65,319)( 66,318)( 67,317)( 68,316)( 69,315)( 70,314)( 71,313)
( 72,312)( 73,311)( 74,310)( 75,309)( 76,308)( 77,307)( 78,306)( 79,305)
( 80,304)( 81,303)( 82,302)( 83,301)( 84,300)( 85,299)( 86,298)( 87,297)
( 88,296)( 89,295)( 90,294)( 91,293)( 92,292)( 93,291)( 94,290)( 95,289)
( 96,288)( 97,287)( 98,286)( 99,285)(100,284)(101,283)(102,282)(103,281)
(104,280)(105,279)(106,278)(107,277)(108,276)(109,275)(110,274)(111,273)
(112,272)(113,271)(114,270)(115,269)(116,268)(117,267)(118,266)(119,265)
(120,264)(121,263)(122,262)(123,261)(124,260)(125,259)(126,258)(127,257)
(128,383)(129,382)(130,508)(131,507)(132,506)(133,505)(134,504)(135,503)
(136,502)(137,501)(138,500)(139,499)(140,498)(141,497)(142,496)(143,495)
(144,494)(145,493)(146,492)(147,491)(148,490)(149,489)(150,488)(151,487)
(152,486)(153,485)(154,484)(155,483)(156,482)(157,481)(158,480)(159,479)
(160,478)(161,477)(162,476)(163,475)(164,474)(165,473)(166,472)(167,471)
(168,470)(169,469)(170,468)(171,467)(172,466)(173,465)(174,464)(175,463)
(176,462)(177,461)(178,460)(179,459)(180,458)(181,457)(182,456)(183,455)
(184,454)(185,453)(186,452)(187,451)(188,450)(189,449)(190,448)(191,447)
(192,446)(193,445)(194,444)(195,443)(196,442)(197,441)(198,440)(199,439)
(200,438)(201,437)(202,436)(203,435)(204,434)(205,433)(206,432)(207,431)
(208,430)(209,429)(210,428)(211,427)(212,426)(213,425)(214,424)(215,423)
(216,422)(217,421)(218,420)(219,419)(220,418)(221,417)(222,416)(223,415)
(224,414)(225,413)(226,412)(227,411)(228,410)(229,409)(230,408)(231,407)
(232,406)(233,405)(234,404)(235,403)(236,402)(237,401)(238,400)(239,399)
(240,398)(241,397)(242,396)(243,395)(244,394)(245,393)(246,392)(247,391)
(248,390)(249,389)(250,388)(251,387)(252,386)(253,385)(254,384);
poly := sub<Sym(508)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope