Polytope of Type {516}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {516}*1032
Also Known As : 516-gon, {516}. if this polytope has another name.
Group : SmallGroup(1032,36)
Rank : 2
Schlafli Type : {516}
Number of vertices, edges, etc : 516, 516
Order of s0s1 : 516
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {258}*516
   3-fold quotients : {172}*344
   4-fold quotients : {129}*258
   6-fold quotients : {86}*172
   12-fold quotients : {43}*86
   43-fold quotients : {12}*24
   86-fold quotients : {6}*12
   129-fold quotients : {4}*8
   172-fold quotients : {3}*6
   258-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 43)(  3, 42)(  4, 41)(  5, 40)(  6, 39)(  7, 38)(  8, 37)(  9, 36)
( 10, 35)( 11, 34)( 12, 33)( 13, 32)( 14, 31)( 15, 30)( 16, 29)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 44, 87)( 45,129)( 46,128)
( 47,127)( 48,126)( 49,125)( 50,124)( 51,123)( 52,122)( 53,121)( 54,120)
( 55,119)( 56,118)( 57,117)( 58,116)( 59,115)( 60,114)( 61,113)( 62,112)
( 63,111)( 64,110)( 65,109)( 66,108)( 67,107)( 68,106)( 69,105)( 70,104)
( 71,103)( 72,102)( 73,101)( 74,100)( 75, 99)( 76, 98)( 77, 97)( 78, 96)
( 79, 95)( 80, 94)( 81, 93)( 82, 92)( 83, 91)( 84, 90)( 85, 89)( 86, 88)
(131,172)(132,171)(133,170)(134,169)(135,168)(136,167)(137,166)(138,165)
(139,164)(140,163)(141,162)(142,161)(143,160)(144,159)(145,158)(146,157)
(147,156)(148,155)(149,154)(150,153)(151,152)(173,216)(174,258)(175,257)
(176,256)(177,255)(178,254)(179,253)(180,252)(181,251)(182,250)(183,249)
(184,248)(185,247)(186,246)(187,245)(188,244)(189,243)(190,242)(191,241)
(192,240)(193,239)(194,238)(195,237)(196,236)(197,235)(198,234)(199,233)
(200,232)(201,231)(202,230)(203,229)(204,228)(205,227)(206,226)(207,225)
(208,224)(209,223)(210,222)(211,221)(212,220)(213,219)(214,218)(215,217)
(259,388)(260,430)(261,429)(262,428)(263,427)(264,426)(265,425)(266,424)
(267,423)(268,422)(269,421)(270,420)(271,419)(272,418)(273,417)(274,416)
(275,415)(276,414)(277,413)(278,412)(279,411)(280,410)(281,409)(282,408)
(283,407)(284,406)(285,405)(286,404)(287,403)(288,402)(289,401)(290,400)
(291,399)(292,398)(293,397)(294,396)(295,395)(296,394)(297,393)(298,392)
(299,391)(300,390)(301,389)(302,474)(303,516)(304,515)(305,514)(306,513)
(307,512)(308,511)(309,510)(310,509)(311,508)(312,507)(313,506)(314,505)
(315,504)(316,503)(317,502)(318,501)(319,500)(320,499)(321,498)(322,497)
(323,496)(324,495)(325,494)(326,493)(327,492)(328,491)(329,490)(330,489)
(331,488)(332,487)(333,486)(334,485)(335,484)(336,483)(337,482)(338,481)
(339,480)(340,479)(341,478)(342,477)(343,476)(344,475)(345,431)(346,473)
(347,472)(348,471)(349,470)(350,469)(351,468)(352,467)(353,466)(354,465)
(355,464)(356,463)(357,462)(358,461)(359,460)(360,459)(361,458)(362,457)
(363,456)(364,455)(365,454)(366,453)(367,452)(368,451)(369,450)(370,449)
(371,448)(372,447)(373,446)(374,445)(375,444)(376,443)(377,442)(378,441)
(379,440)(380,439)(381,438)(382,437)(383,436)(384,435)(385,434)(386,433)
(387,432);;
s1 := (  1,303)(  2,302)(  3,344)(  4,343)(  5,342)(  6,341)(  7,340)(  8,339)
(  9,338)( 10,337)( 11,336)( 12,335)( 13,334)( 14,333)( 15,332)( 16,331)
( 17,330)( 18,329)( 19,328)( 20,327)( 21,326)( 22,325)( 23,324)( 24,323)
( 25,322)( 26,321)( 27,320)( 28,319)( 29,318)( 30,317)( 31,316)( 32,315)
( 33,314)( 34,313)( 35,312)( 36,311)( 37,310)( 38,309)( 39,308)( 40,307)
( 41,306)( 42,305)( 43,304)( 44,260)( 45,259)( 46,301)( 47,300)( 48,299)
( 49,298)( 50,297)( 51,296)( 52,295)( 53,294)( 54,293)( 55,292)( 56,291)
( 57,290)( 58,289)( 59,288)( 60,287)( 61,286)( 62,285)( 63,284)( 64,283)
( 65,282)( 66,281)( 67,280)( 68,279)( 69,278)( 70,277)( 71,276)( 72,275)
( 73,274)( 74,273)( 75,272)( 76,271)( 77,270)( 78,269)( 79,268)( 80,267)
( 81,266)( 82,265)( 83,264)( 84,263)( 85,262)( 86,261)( 87,346)( 88,345)
( 89,387)( 90,386)( 91,385)( 92,384)( 93,383)( 94,382)( 95,381)( 96,380)
( 97,379)( 98,378)( 99,377)(100,376)(101,375)(102,374)(103,373)(104,372)
(105,371)(106,370)(107,369)(108,368)(109,367)(110,366)(111,365)(112,364)
(113,363)(114,362)(115,361)(116,360)(117,359)(118,358)(119,357)(120,356)
(121,355)(122,354)(123,353)(124,352)(125,351)(126,350)(127,349)(128,348)
(129,347)(130,432)(131,431)(132,473)(133,472)(134,471)(135,470)(136,469)
(137,468)(138,467)(139,466)(140,465)(141,464)(142,463)(143,462)(144,461)
(145,460)(146,459)(147,458)(148,457)(149,456)(150,455)(151,454)(152,453)
(153,452)(154,451)(155,450)(156,449)(157,448)(158,447)(159,446)(160,445)
(161,444)(162,443)(163,442)(164,441)(165,440)(166,439)(167,438)(168,437)
(169,436)(170,435)(171,434)(172,433)(173,389)(174,388)(175,430)(176,429)
(177,428)(178,427)(179,426)(180,425)(181,424)(182,423)(183,422)(184,421)
(185,420)(186,419)(187,418)(188,417)(189,416)(190,415)(191,414)(192,413)
(193,412)(194,411)(195,410)(196,409)(197,408)(198,407)(199,406)(200,405)
(201,404)(202,403)(203,402)(204,401)(205,400)(206,399)(207,398)(208,397)
(209,396)(210,395)(211,394)(212,393)(213,392)(214,391)(215,390)(216,475)
(217,474)(218,516)(219,515)(220,514)(221,513)(222,512)(223,511)(224,510)
(225,509)(226,508)(227,507)(228,506)(229,505)(230,504)(231,503)(232,502)
(233,501)(234,500)(235,499)(236,498)(237,497)(238,496)(239,495)(240,494)
(241,493)(242,492)(243,491)(244,490)(245,489)(246,488)(247,487)(248,486)
(249,485)(250,484)(251,483)(252,482)(253,481)(254,480)(255,479)(256,478)
(257,477)(258,476);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(516)!(  2, 43)(  3, 42)(  4, 41)(  5, 40)(  6, 39)(  7, 38)(  8, 37)
(  9, 36)( 10, 35)( 11, 34)( 12, 33)( 13, 32)( 14, 31)( 15, 30)( 16, 29)
( 17, 28)( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 44, 87)( 45,129)
( 46,128)( 47,127)( 48,126)( 49,125)( 50,124)( 51,123)( 52,122)( 53,121)
( 54,120)( 55,119)( 56,118)( 57,117)( 58,116)( 59,115)( 60,114)( 61,113)
( 62,112)( 63,111)( 64,110)( 65,109)( 66,108)( 67,107)( 68,106)( 69,105)
( 70,104)( 71,103)( 72,102)( 73,101)( 74,100)( 75, 99)( 76, 98)( 77, 97)
( 78, 96)( 79, 95)( 80, 94)( 81, 93)( 82, 92)( 83, 91)( 84, 90)( 85, 89)
( 86, 88)(131,172)(132,171)(133,170)(134,169)(135,168)(136,167)(137,166)
(138,165)(139,164)(140,163)(141,162)(142,161)(143,160)(144,159)(145,158)
(146,157)(147,156)(148,155)(149,154)(150,153)(151,152)(173,216)(174,258)
(175,257)(176,256)(177,255)(178,254)(179,253)(180,252)(181,251)(182,250)
(183,249)(184,248)(185,247)(186,246)(187,245)(188,244)(189,243)(190,242)
(191,241)(192,240)(193,239)(194,238)(195,237)(196,236)(197,235)(198,234)
(199,233)(200,232)(201,231)(202,230)(203,229)(204,228)(205,227)(206,226)
(207,225)(208,224)(209,223)(210,222)(211,221)(212,220)(213,219)(214,218)
(215,217)(259,388)(260,430)(261,429)(262,428)(263,427)(264,426)(265,425)
(266,424)(267,423)(268,422)(269,421)(270,420)(271,419)(272,418)(273,417)
(274,416)(275,415)(276,414)(277,413)(278,412)(279,411)(280,410)(281,409)
(282,408)(283,407)(284,406)(285,405)(286,404)(287,403)(288,402)(289,401)
(290,400)(291,399)(292,398)(293,397)(294,396)(295,395)(296,394)(297,393)
(298,392)(299,391)(300,390)(301,389)(302,474)(303,516)(304,515)(305,514)
(306,513)(307,512)(308,511)(309,510)(310,509)(311,508)(312,507)(313,506)
(314,505)(315,504)(316,503)(317,502)(318,501)(319,500)(320,499)(321,498)
(322,497)(323,496)(324,495)(325,494)(326,493)(327,492)(328,491)(329,490)
(330,489)(331,488)(332,487)(333,486)(334,485)(335,484)(336,483)(337,482)
(338,481)(339,480)(340,479)(341,478)(342,477)(343,476)(344,475)(345,431)
(346,473)(347,472)(348,471)(349,470)(350,469)(351,468)(352,467)(353,466)
(354,465)(355,464)(356,463)(357,462)(358,461)(359,460)(360,459)(361,458)
(362,457)(363,456)(364,455)(365,454)(366,453)(367,452)(368,451)(369,450)
(370,449)(371,448)(372,447)(373,446)(374,445)(375,444)(376,443)(377,442)
(378,441)(379,440)(380,439)(381,438)(382,437)(383,436)(384,435)(385,434)
(386,433)(387,432);
s1 := Sym(516)!(  1,303)(  2,302)(  3,344)(  4,343)(  5,342)(  6,341)(  7,340)
(  8,339)(  9,338)( 10,337)( 11,336)( 12,335)( 13,334)( 14,333)( 15,332)
( 16,331)( 17,330)( 18,329)( 19,328)( 20,327)( 21,326)( 22,325)( 23,324)
( 24,323)( 25,322)( 26,321)( 27,320)( 28,319)( 29,318)( 30,317)( 31,316)
( 32,315)( 33,314)( 34,313)( 35,312)( 36,311)( 37,310)( 38,309)( 39,308)
( 40,307)( 41,306)( 42,305)( 43,304)( 44,260)( 45,259)( 46,301)( 47,300)
( 48,299)( 49,298)( 50,297)( 51,296)( 52,295)( 53,294)( 54,293)( 55,292)
( 56,291)( 57,290)( 58,289)( 59,288)( 60,287)( 61,286)( 62,285)( 63,284)
( 64,283)( 65,282)( 66,281)( 67,280)( 68,279)( 69,278)( 70,277)( 71,276)
( 72,275)( 73,274)( 74,273)( 75,272)( 76,271)( 77,270)( 78,269)( 79,268)
( 80,267)( 81,266)( 82,265)( 83,264)( 84,263)( 85,262)( 86,261)( 87,346)
( 88,345)( 89,387)( 90,386)( 91,385)( 92,384)( 93,383)( 94,382)( 95,381)
( 96,380)( 97,379)( 98,378)( 99,377)(100,376)(101,375)(102,374)(103,373)
(104,372)(105,371)(106,370)(107,369)(108,368)(109,367)(110,366)(111,365)
(112,364)(113,363)(114,362)(115,361)(116,360)(117,359)(118,358)(119,357)
(120,356)(121,355)(122,354)(123,353)(124,352)(125,351)(126,350)(127,349)
(128,348)(129,347)(130,432)(131,431)(132,473)(133,472)(134,471)(135,470)
(136,469)(137,468)(138,467)(139,466)(140,465)(141,464)(142,463)(143,462)
(144,461)(145,460)(146,459)(147,458)(148,457)(149,456)(150,455)(151,454)
(152,453)(153,452)(154,451)(155,450)(156,449)(157,448)(158,447)(159,446)
(160,445)(161,444)(162,443)(163,442)(164,441)(165,440)(166,439)(167,438)
(168,437)(169,436)(170,435)(171,434)(172,433)(173,389)(174,388)(175,430)
(176,429)(177,428)(178,427)(179,426)(180,425)(181,424)(182,423)(183,422)
(184,421)(185,420)(186,419)(187,418)(188,417)(189,416)(190,415)(191,414)
(192,413)(193,412)(194,411)(195,410)(196,409)(197,408)(198,407)(199,406)
(200,405)(201,404)(202,403)(203,402)(204,401)(205,400)(206,399)(207,398)
(208,397)(209,396)(210,395)(211,394)(212,393)(213,392)(214,391)(215,390)
(216,475)(217,474)(218,516)(219,515)(220,514)(221,513)(222,512)(223,511)
(224,510)(225,509)(226,508)(227,507)(228,506)(229,505)(230,504)(231,503)
(232,502)(233,501)(234,500)(235,499)(236,498)(237,497)(238,496)(239,495)
(240,494)(241,493)(242,492)(243,491)(244,490)(245,489)(246,488)(247,487)
(248,486)(249,485)(250,484)(251,483)(252,482)(253,481)(254,480)(255,479)
(256,478)(257,477)(258,476);
poly := sub<Sym(516)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope